

2024

CERAMIC CAPACITORS VARISTORS CHOKE COILS

CAT.NO.E1002D / E1006G / E1008Y

METAL OXIDE VARISTOR TNR™

Production Guide	P40-56
Series Table	P40
Precautions and Guidelines	P41
Group Chart / Part Numbering System	P42
Technical Terms on Varistors	P43
Safety Standards	P44
Lead Forming Specifications	P47
Taping Specifications (Disk Type)	P48
Packaging	P55
Minimum Packaging Quantity	P56
Product Specifications	P57-96
Disk Type TNR V Series	P58
Pulse Life Time Ratings	P74
TNR SV Series	P79
TNR H Series	P90
TNR GF Series	P94
Technical Note, Application Examples	P97-108
Technical Note, Application Examples Technical Note	P97-108

Item	Series	Varistor voltage (V)	Surge current withstand (A)	Features	Page				
	V	15 to 1800	250 to 10000	Excellent responsiveness and high reliability Products conforming to overseas safety standards (UL, CSA, VDE) Ideal for general use and absorbing various kinds of surges	58				
Disk Type	SV	22 to 1000	125 to 10000	Highly flame-retardant exterior material (halogen free) is used Suppresses burning and scattering of exterior materials even if they are destroyed due to application of excessive voltage Product with improved safety					
	Н	22 to 47	5 to 40*	Large surge energy withstand (5 to 40J) Broad operating temperature range (between -40 and +125°C) Highly resistant to thermal shock (between -40 and +150°C, 50 cycles) Ideal for absorbing various kinds of surges for automobiles	90				
	GF	270 to 820	2500 to 4000	With built-in thermal fuse Product with improved safety	94				

^{*} Surge energy withstand (J)

PRECAUTIONS AND GUIDELINES

The circuits described as examples in this catalog and the "delivery specifications" are featured in order to show the operations and usage of our products, however, this fact does not guarantee that the circuits are available to function in your equipment systems.

We are not in any case responsible for any failures or damage caused by the use of information contained herein.

You should examine our products, of which the characteristics are described in the "delivery specifications" and other documents, and determine whether or not our products suit your requirements according to the specifications of your equipment systems. Therefore, you bear final responsibility regarding the use of our products.

Please make sure that you take appropriate safety measures such as use of redundant design and malfunction prevention measures in order to prevent fatal accidents and/or fires in the event any of our products malfunction.

- 1 The performance of varistors may deteriorate, the inside elements may be damaged, and they cause the varistors to smoke or catch fire, if the following precautions are not observed.
- (1) Do not use varistors in places whose temperature exceeds their rated operating temperature due to direct sunlight or heating objects.
- (2) Do not use varistors in a humid place directly exposed to the weather or steam.
- (3) Do not use varistors in places filled with dust, salt-mist or corrosive gas.
- (4) The soldering method is flow soldering and iron soldering. The recommended conditions are as follows.
 - Flow soldering: Pre-heat 100±20°C, 60 to 90 sec., Soldering 260±5°C, 10±1sec.
 - Iron soldering: 350±10°C, less than 4sec.
- (5) Do not use solvents such as thinner and acetone which dissolve or make the exterior covering of varistors deteriorate.
 - Ultrasonic cleaning shall be so set that the vibration can not travel the assembly boards.
- (6) Do not expose varistors to intense vibration, shock (drop shock etc.) or pressure making the exterior covering or inside element crack.
- (7) Do not apply high voltage exceeding the rated maximum applying voltage to varistors.
 - In the case of automotive jump starts, however, use the varistors within short-term allowable voltage limits prescribed in the catalog.
 - If voltage wave form is not complete DC, a maximum value of peak voltages shall not exceed the rated maximum applying voltage.
- (8) Do not apply peak currents exceeding the rated maximum energy.
- (9) When peak currents are repeatedly applied to varistors, do not exceed the pulse life time ratings prescribed in the catalog.
- (10) When peak currents are intermittently applied to varistors at short intervals, do not exceed the rated wattage.
- (11) Using varistors in circuits whose frequency exceeds 1kHz may damage their elements by heat generation due to dielectric loss.
- (12) In the case of coating or molding varistors with resin, do not use the resin which makes the varistors deteriorate.
- (13) Do not install varistors in places near by flammable substances.
- **2** Varistors may blow up, if the following precautions are not observed.
- (1) Do not use varistors in circuits applied peak currents exceeding the specified limits.
- (2) Do not exceed the rated maximum applying voltage.
- 3 Varistors do not function but damages devices, if the following precautions are not observed.
- (1) Hold the root of the varistor lead when bending or cutting the lead.
- (2) The lead close to insulation cover shall not be bent or applied to outer force.
- (3) When soldering the lead, do not damage a solder material and insulator fabricating the varistor.
- 4 The following preventive measures should be made for avoiding unexpected accident.
- (1) When using a varistor in between circuits, connect an earth leakage breaker (ground-fault circuit interrupter) or current fuse in series with the varistor.
- (2) When using a varistor in between a circuit and ground, connect an earth leakage breaker (ground-fault circuit interrupter) or both of a current fuse and thermal fuse in series with the varistor. Also, in case of excessive voltage due to ground short circuit accident, use the varistor with the rated voltage higher than the excessive voltage.
- 5 Store varistors in their packages in an environment with a temperature of -10 to + 40°C and a relative humidity of less than 75%. Avoid storing in an environment subject to rapid changes in temperature, direct sunlight, corrosive gases, or dust. The storage life is two years from the time of purchase as a general rule.
- 6 Follow safety standards such as Electrical, UL, CSA and so forth, which specify the use of varistors.
- 7 | Catalogs

Product specifications in this catalog are subject to change without notice.

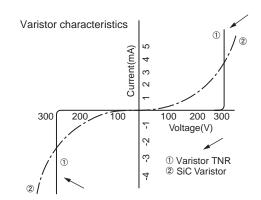
Please request and make sure our product specifications before purchase and/or use.

Parformance test data in the catalogs show typical values, which are not assured in the catalogs.

- 8 Response to the Substances of Concern
 - (1) Nippon Chemi-Con aims for developing products that meet laws and regulations concerning substances of concern. (Some products may contain regulated substances for exempted application.) Please contact us for more information about law-compliance status.
 - (2) According to the content of REACH handbook (Guidance on requirements for substances in articles which is published on May 2008), our electronic components are "articles without any intended release". Therefore they are not applicable for "Registration" for EU REACH Regulation Article 7 (1).

Reference: Electrolytic Condenser Investigation Society

"Study of REACH Regulation in EU about Electrolytic Capacitor" (publicized on 13 March 2008)

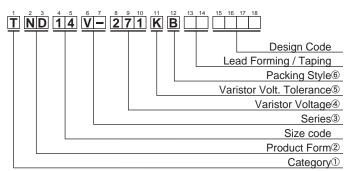

TNR is a our metal oxide varistor metal oxide varistor having steep non-linear V-I characteristics and high discharge current capability, as follows:

◆Metal oxide varistor Features

- 1. Excellent transient voltage suppression
- 2. High discharge current capability
- 3. Wide range of voltage ratings
- 4. Symmetrical V-I characteristics (Non Polarity)
- 5. Fast response
- 6. Steady operation for repeating surge
- 7. Low temperature coefficient
- 8. High reliability
- 9. UL recognized
- 10. CSA recognized

◆Applications

- 1. Electronics instrument protection
- 2. Telephone system protection
- 3. Relay contact point protection
- 4. Rectification diode protection
- 5. SCR protection
- 6. Reduction of abnormal voltage in high voltage current
- 7. Switching transistor proteciton
- 8. Reduction of switching surge in electromagnetic brake
- 9. Prevention of error in digital circuit
- 10. Reduction of noise from an abnormal voltage



♦Group Chart

◆Part Numbering System

The current parts numbering system is changed to new system for global coding. Your cooperation will be very much appreciated.

①Category						
	Metal Oxide					
Т	Varistors					
	TNR					
2	Product Form					
ND	Disk Type					
NL	Sleeve Type					
3 Series						
V-	V Series					

Waristor Voltage								
The fire	st two digits are signific	ant						
figures	and the third one den	otes						
the nur	mber of following zeros	6.						
⑤Varis	stor Volt. Tolerance							
K	±10%							
©Packing Style								
B Bulk								
Т	Taping							

@\/ ! : \ \/ !!

Technical Term	Description				
Varistor Voltage	Voltage across the varistor measured at CmA DC. C = 0.1 or 1.0 as specified.				
Max. Allowable Voltage (ACrms)	Maximum continuous sinusoidal RMS voltage which may be applied.				
Max. Allowable Voltage (DC)	Maximum continuous DC voltage which may be applied.				
Maximum Clamping Voltage	Peak voltage across the varistor, measured under conditions of a specified peak impulse current and specified waveform (8/20µs) applied 1 time.				
Rated Wattage	Maximum power that can be applied within the specified ambient temperature.				
Maximum Peak Current	Surge current withstand refers to the maximum current value that is within 10% of the varistor voltage against an initial value when the standard impulse current at 8/20 µs in accordance with IEC standards is applied once or twice within a five-minute interval. If this value is exceeded, a Varistor malfunction may result. When selecting a Varistor, select one that has a higher rate for a surge current than the anticipated surge current rate.				
Current Wave Form for Clamping Voltage Test and Maximum Peak Current	Crest Value 100 90 10 20µs 10 Impulse Duration Time				
Energy	Surge energy withstand refers to the maximum energy value that is within 10% of the varistor voltage against an initial value when a 2ms shortwave is applied once. When a Varistor absorbs energy exceeding this value, it may malfunction. Therefore, when selecting a Varistor, select one that can withstand a higher energy surge than the anticipated surge energy rate.				
Capacitance	Typical value measured at a 1kHz test frequency. (Sin wave. Reference purpose only)				

SAFETY STANDARDS for V Series

◆TNR V Series / Recognized safety standards

Standards	Category Name	Title	File No.	Varistor Voltage Ranges	Symbol
UL1449	VZCA2 (USA)	Surge Protective Devices	E323623	82~1800 V	0
061449	VZCA8 (Canada)	Surge Flotective Devices	L323023	02 1000 V	
CSA C22.2 No.269.5-17 Class 2213 31		Type 5-Component Surge Protective Devices(SPD), Varistor Type V Series	097864 0 000	200 ∼1800 V	☆
VDE		Varistor DIN EN 61051-1:2009-04 IEC 61051-1:2007-04 61051-2:1991-01 61051-2(ed.1);am1:2009-05 61051-2-2:1991-01	118623	15~1800 V	
CQC		GB/T10193, GB/T10194 GB4943.1, GB8898	(1)	82~1800 V	\Diamond

Note(1) File number of CQC varies according to a part number. Pleasee refer to us.

Recognized Part numbers

Dating	Varistor voltage												Par	rt N	umb	er											
Rating	(V)	TNI	D05V-	***K	TNI	D07V-	***K	TND09V-***K			TN	D10\	/-**	'K	TNE)10V	-***KS	TND12V-***K		TND14V-***K		*K	TNI	D20V	-***K		
820K	82	0			0			0						\Diamond										\Diamond	0] 🔷
101K	100	0			0			0			\circ			\Diamond										\Diamond	0		$\supset \Diamond$
121K	120	0			0			0			\circ			\Diamond										\Diamond	0	Γ] 🔷
151K	150	0			0			0			\circ			\Diamond										\Diamond	0		
181K	180	0			0			0			0			\Diamond										\Diamond	0] 🔷
201K	200	0	☆		0	☆		0	☆			☆		\Diamond								☆		\Diamond	0	☆▮	
221K	220	0	☆		0	☆		0	☆			☆		\Diamond								☆		\Diamond	0	☆▮	
241K	240	\circ	☆		0	☆		0	☆		\circ	☆		\Diamond								☆		\Diamond	0	☆▮	
271K	270	0	☆		0	☆		0	☆			☆		\Diamond								☆		\Diamond	0	☆▮	
331K	330	0	☆		0	☆		0	☆		0	☆		\Diamond							0	☆		\Diamond	0	☆	
361K	360	0	☆		0	☆		0	☆			☆		\Diamond								☆		\Diamond	0	☆▮	
391K	390	0	☆		0	☆		0	☆			☆		\Diamond								☆		\Diamond	0	☆▮	
431K	430	0	☆		0	☆		0	☆			☆		\Diamond				0	☆			☆		\Diamond	0	☆■	
471K	470	0	☆		0	☆		0	☆			☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		♦	0	☆▮	•
511K	510				0	☆		0	☆		0	☆		\Diamond	0	☆	•	0	☆	•	0	☆		♦	0	☆ ■	•
561K	560											☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		♦	0	☆▮	•
621K	620											☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		•	0	☆▮	•
681K	680											☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		♦	0	☆■	•
751K	750											☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		♦	0	☆▮	•
821K	820										0	☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		•	0	☆■	•
911K	910											☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		♦	0	☆▮	•
102K	1000							ļ			0	☆		\Diamond	0	☆	•	0	☆	■ ♦		☆		•	0	☆■	•
112K	1100											☆		\Diamond	0	☆	•	0	☆	•		☆		♦	0	☆■	•
122K	1200							ļ			Ō	☆		\Diamond	0	☆	•	0	☆	■ ♦	10	☆		♦	0	☆▮	•
152K	1500							ļ			0	☆		\Diamond	0	☆	■ ♦	Ō	☆	■ ♦	To	☆		♦	0	☆■	•
182K	1800							·			Ó	☆		\Diamond	0	☆	■ ♦	Õ	☆	■ ♦	Τō	☆		•	<u>Ó</u>	☆▮	•

[&]quot;***K" or "***KS": Ratings

○: UL1449, ☆: CSA, □: VDE, ■: VDE and IEC 62368-1:2014 G.8.2

♦: CQC(GB/T10193, GB/T10194), ♦: CQC(GB/T10193, GB/T10194, GB4943.1, GB8898)

*Recognized marking

UL, CSA: on the products VDE, CQC: on the package label

*The safety standards may be changed without a notice. Please refer for the latest certificate to us.

Please refer to each certification organization for the inquiry about the contents of the safety standards.

◆The AC Rated Voltage and Maximum Allowable Voltage

Rating	Maximum Allo	owable Voltage	AC Rate	d Voltage (Vrms)
Rating	ACrms (V)	DC (V)	UL1449	CSA · CLASS 2213 31
820K	50	65	45	N/A
101K	60	85	55	N/A
121K	75	100	68	N/A
151K	95	125	86	N/A
181K	110	145	100	N/A
201K	130	170	118	118
221K	140	180	127	127
241K	150	200	136	136
271K	175	225	159	159
331K	210	270	189	189
361K	230	300	209	209
391K	250	320	227	227
431K	275	350	250	250
471K	300	385	272	272
511K	320	410	286	286
561K	350	460	318	318
621K	385	505	350	350
681K	420	560	381	381
751K	460	615	418	418
821K	510	670	463	463
911K	550	745	500	500
102K	625	825	568	568
112K	680	895	600	600
122K	720	980	600	600
152K	860	1220	600	600
182K	1000	1465	600	600

◆Application Notes

1) CSA regulate "Maximum Rating Fuse" for using Varistor to "Audio, Video and Similar Electronic Equipment" as below

	= =	
Maximum Peak Current 8/20μs, 1 time(A)	Type of TNR	Maximum Rating of Fuse (A)
Up to 500		3
501~2000	TND05V, TND07V	5
2001~6000	TND09V, TND10V, TND12V, TND14V	10
Over 6000	TND20V	Not specified

2) "Rated Voltages" are specified for UL/CSA recognized components besides Maximum Allowable Voltage because of conforming to the Standby Current specified in safety standards.

In case of making an application to UL/CSA approval for equipment with Varistor, the maximum AC operating voltage of equipment shall be lower than the Varistor Rated Voltage.

SAFETY STANDARDS for SV Series

◆TNR SV Series / Recognized safety standards

Standards	Category Name	Title	File No.	Varistor Voltage Ranges	Symbol
111 4 4 4 0	VZCA2 (USA)	Curae Protective Devices	F222622	SV: 220~1000 V)
UL1449	VZCA8 (Canada)	Surge Protective Devices	E323623	SV:220~1000 V	
CSA C22.2 No.269.5-17 Class 2213 31		Type 5-Component Surge Protective Devices(SPD), Varistor Type SV Series	097864 0 000	SV : 220~1000 V	☆
VDE		Varistor DIN EN 61051-1:2009-04 IEC 61051-1:2007-04 61051-2:1991-01 61051-2:2:1991-01	118623	SV: 220~1000 V	
CQC		GB/T10193, GB/T10194 GB4943.1	(1)	SV: 220~1000 V	\Diamond

Note(1) File number of CQC varies according to a part number. Pleasee refer to us.

Recognized Part numbers

Rating	Varistor voltage				Part Number			
Rating	(V)	TND05SV***K	TND07SV***K	TND10SV***K	TND10SV***KS	TND12SV***K	TND14SV***K	TND14V-***K
221K	220	○ ☆ □	○ ☆ □	$\bigcirc \land \Box \Diamond$			○ ☆ ■ ◇	○ ☆ ■ ◇
241K	240	○ ☆ □	○ ☆ □	0 ☆ □ ◊			○ ☆ ■ ◇	○ ☆ ■ ◇
271K	270	○ ☆ □	○ ☆ □	$\bigcirc \ \Diamond \ \Box \ \Diamond$			○ ☆ ■ ◇	○ ☆ ■ ◇
431K	430	○ ☆ □	○ ☆ □	0 ☆ □ ◊		○ ☆ ■ ◇	○ ☆ ■ ◇	○ ☆ ■ ◇
471K	470	○ ☆ □	○ ☆ □	○ ☆ □ ◊	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
511K	510	/	0 ☆ □	○ ☆ □ ◊	○ ☆ ■ ♦	○ ☆ ■ ♦	○ ☆ ■ ◆	○ ☆ ■ ◆
561K	560		[0 ☆ □ ◊	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
621K	620	· · · · · / · · · · /		○ ☆ □ ◊	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
681K	680			0 ☆ □ ◊	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
751K	750			$\bigcirc \ \Diamond \ \Box \ \Diamond$	○ ☆ ■ ◆	○ ☆ ■ ♦	○ ☆ ■ ◆	○ ☆ ■ ◆
821K	820			$\bigcirc \ \ \Box \ \ \bigcirc$	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
911K	910		/	○ ☆ □ ◊	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆
102K	1000	/	/	$\bigcirc \ \ \ \Box \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆	○ ☆ ■ ◆

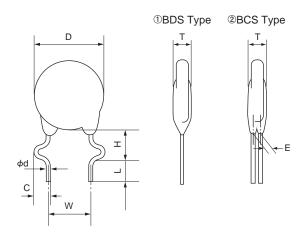
[&]quot;***K" or "***KS": Ratings

○: UL1449, ☆: CSA, □: VDE, ■: VDE and IEC 62368-1:2014 G.8.2

♦: CQC(GB/T10193, GB/T10194), ♦: CQC(GB/T10193, GB/T10194, GB4943.1)

UL, CSA : on the products VDE, CQC: on the package label

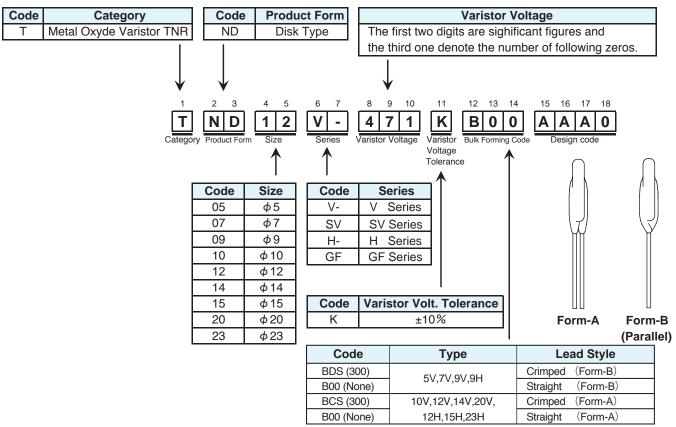
*The safety standards may be changed without a notice. Please refer for the latest certificate to us.


Please refer to each certification organization for the inquiry about the contents of the safety standards.

^{*}Recognized marking

●This Specifies the lead forming specifications for Disk Type (V, H series)

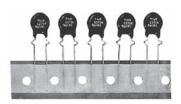
◆FORM

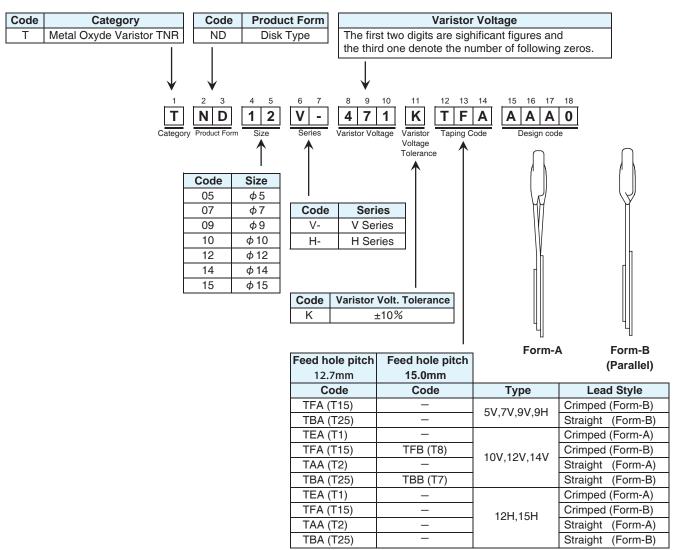


◆DIMENSIONS

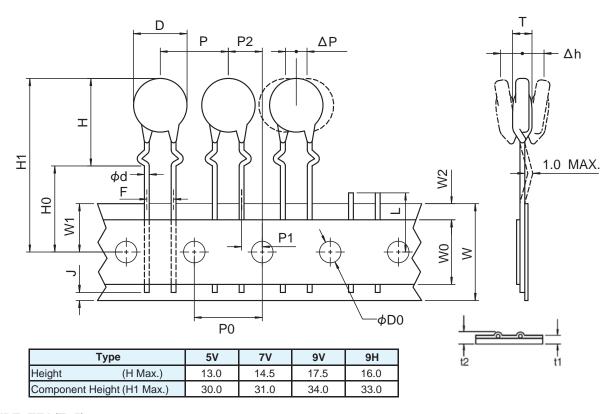
Unit: mm

Туре	5V, 7V, 9V, 9H	10V, 12V, 14V, 12H, 15H	20V, 23H		
Lead style code	BDS	BCS	BCS		
D	refer to each spec.	refer to each spec.	refer to each spec.		
T	refer to each spec.	refer to each spec.	refer to each spec.		
н	6.0 ^{+2.0} -1.0	6.0 ^{+2.0} _{-1.0}	6.0 ^{+2.0} -1.0		
L	5.0±1.0	5.0±1.0	5.0±1.0		
W	5.0±1.0	7.5±1.0	10.0±1.0		
φd	0.6±0.05	0.8±0.05	0.8±0.05		
С	2.0±0.5	2.0±0.5	2.0±0.5		
E	_	refer to each spec.	refer to each spec.		


◆PART NUMBERING SYSTEM (BULK)

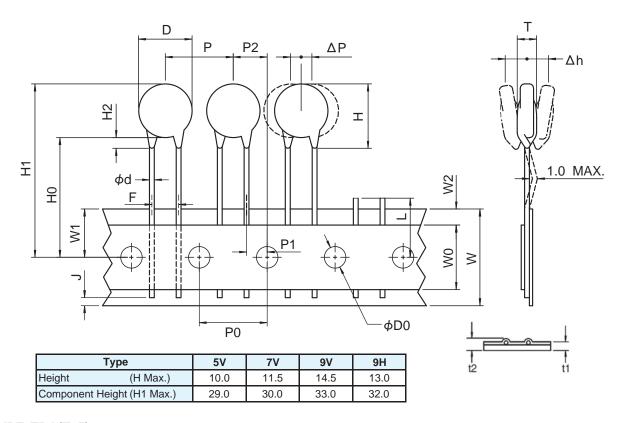

Note: The Code (300) is the Previous Code.

This Specifies taping specifications for varistors which have normal disk diameter of 5 to 15mm and nominal varistor voltage of 15 to 510V.


◆PART NUMBERING SYSTEM

Note: The Code (T1,T15,T2,T25,T8,T7) are the old taping code.

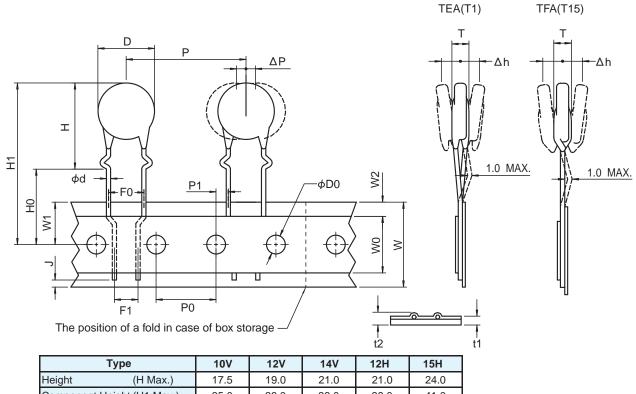
◆5V, 7V, 9V, 9H : TYPE TFA(T15) (Crimped Lead)



◆TYPE TFA(T15)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.6±0.05	
Pitch of component	Р	12.7±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.85±0.7	Measured at the upper end of tape
Feed hole center to component center	P2	6.35±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F	5.0±0.8	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	18.0± 1.0 0.5	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Seating plane height	H0	16.0±0.5	
Component height	H1	_	Please refer to the above list
Lead position	J	6.0 Max.	
Defective article cut position	L	11.0 Max.	

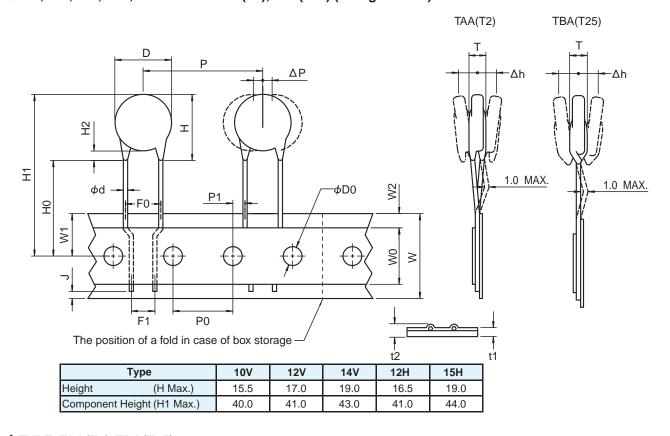
◆ 5V, 7V, 9V, 9H : TYPE TBA(T25) (Straight Lead)



◆TYPE TBA(T25)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.6±0.05	
Pitch of component	Р	12.7±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.85±0.7	Measured at the upper end of tape
Feed hole center to component center	P2	6.35±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F	5.0±0.8	
Deviation across tape	Δh	0±2.0	9V : 34.0 Max.
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	V	18.0± ½.5	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	20.0± 1.5 1.0	
Component height	H1	_	Please refer to the above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	
Defective article cut position	L	11.0 Max.	

◆10V, 12V, 14V, 12H, 15H: TYPE TEA(T1), TFA(T15) (Crimped Lead)


Туре	10V	12V	14V	12H	15H
Height (H Max.)	17.5	19.0	21.0	21.0	24.0
Component Height (H1 Max.)	35.0	36.0	38.0	38.0	41.0

◆TYPE TEA(T1), TFA(T15)

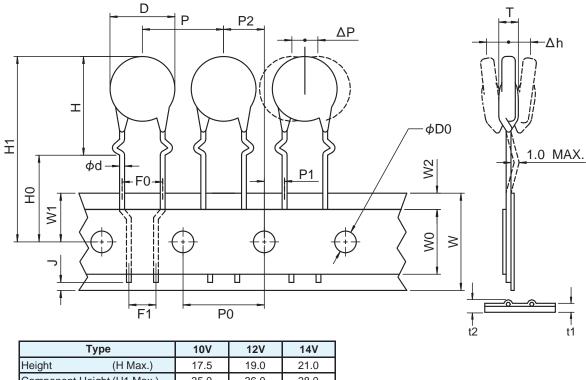
Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	25.4±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	2.6±0.5	Measured at the upper end of tape
Feed hole position	W1	9.0±0.5	
Landamasian	F0	7.5±0.8	
Lead spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	18.0 +1.0 -0.5	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Seating plane height	H0	16.0±1.0	
Component height	H1	_	Please refer to the above list
Lead position	J	6.0 Max.	

◆10V, 12V, 14V, 12H, 15H : TYPE TAA(T2), TBA(T25) (Straight Lead)

◆TYPE TAA(T2), TBA(T25)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	ø d	0.8±0.05	
Pitch of component	Р	25.4±1.0	
Feed hole pitch	P0	12.7±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	2.6±0.5	Measured at the upper end of tape
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
Lead Spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.0	
Carrier tape width	W	18.0 ^{+1.0} _{-0.5}	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	20.0 Min.	SE: 19.0 Min.
Component height	H1	_	Please refer to the above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	

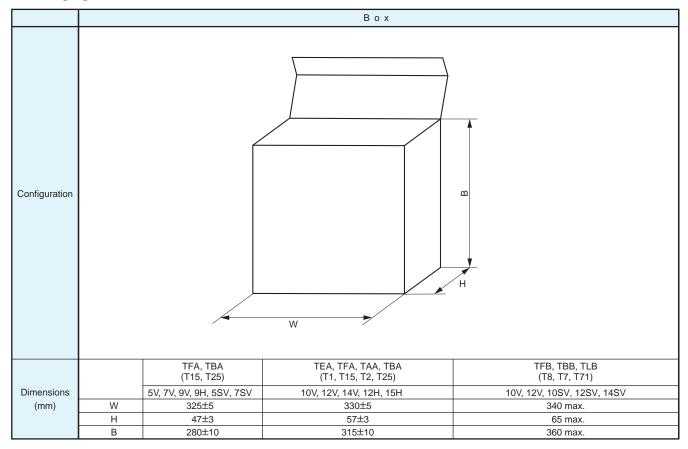
♦10V, 12V, 14V: TYPE TBB(T7) (Straight Lead, 15mm Pitch)


Туре	10V	12V	14V
Height (H Max.)	15.5	17.0	19.0
Component Height (H1 Max.)	37.0	39.0	41.0

◆TYPE TBB(T7)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec (14V: 15.0 Max.)
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	15.0±1.0	14SE: 30.0 ±1.0 mm
Feed hole pitch	P0	15.0±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.75±0.5	Measured at the upper end of tape
Feed hole center to component center	P2	7.5±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
Lead spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.3	
Carrier tape width	W	18.0± 0:5	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Height from tape center to component base	H0	20.0± 1.5	
Component height	H1	_	Please refer to above list
Component height	H2	3.0 Max.	
Lead position	J	6.0 Max.	

♦10V, 12V, 14V: TYPE TFB(T8) (Crimped Lead, 15mm Pitch)


	Туре	10V	12V	14V	
Height	(H Max.)	17.5	19.0	21.0	
Component H	leight (H1 Max.)	35.0	36.0	38.0	

◆TYPE TFB(T8)

Parameter	Code	Dimensions (mm)	Note
Diameter of component	D	_	Refer to the applicable detail spec (14V: 15.0 Max.)
Thickness of component	Т	_	Refer to the applicable detail spec
Lead diameter	φd	0.8±0.05	
Pitch of component	Р	15.0±1.0	14SE: 30.0±1.0 mm
Feed hole pitch	P0	15.0±0.3	Cumulative pitch error : ±1 mm/20 pitches
Feed hole diameter	φD0	4.0±0.2	
Feed hole center to lead	P1	3.75±0.5	Measured at the upper end of tape
Feed hole center to component center	P2	7.5±1.3	
Feed hole position	W1	9.0±0.5	
Lead spacing	F0	7.5±0.8	
Lead spacing	F1	5.0 Nom.	
Deviation across tape	Δh	0±2.0	
Deviation along tape	ΔΡ	0±1.3	
Carrier tape width	W	$18.0\pm {}^{1.0}_{0.5}$	
Hold down tape width	W0	5.0 Min.	
Tape thickness	t1	0.6±0.3	
Total tape thickness	t2	1.5 Max.	
Hold down tape position	W2	3.0 Max.	
Secting plane height	Н	_	10V; 17.5 Max. 14V; 21.0 Max.
Seating plane height	H0	16.0±1.0	
Component height	H1	_	Please refer to above list
Lead position	J	6.0 Max.	

METAL OXIDE VARISTORS TNR™

◆Packaging

♦Others

- 1) On the box, the following are noted.
 - 1. Part number
 - 2. Lot number
 - 3. Quantity
 - 4. Country of origin
- 2) Minimum order quantity shall be the packaging quantity per one box one reel.

Minimum Packaging Quantity

Please order by units of minimum packaging quantity.

♦Disk Type

5V, 7V	hole pitch (mm) 12.7 12.7 12.7 12.7 12.7 15.0 12.7 15.0 12.7 15.0 12.7 15.0	1,500 1,000 1,500 1,000 800 1,000 500 1,000 500 1,000	Straight Lead (pcs/bag) 3,000 3,000 2,000 2,000 1,500 1,500 1,000	Formed/Cut Lead (pcs/bag) 5,000 5,000 5,000 2,500 2,500 2,500 2,500
330 to 620 9V	12.7 12.7 12.7 12.7 15.0 12.7 15.0 12.7 15.0 12.7	1,000 1,500 1,000 800 1,000 500 1,000 500 1,000 -	3,000 2,000 2,000 1,500 1,500 1,000	5,000 5,000 5,000 2,500 2,500 2,500
9V	12.7 12.7 12.7 15.0 12.7 15.0 12.7 15.0 12.7	1,500 1,000 800 1,000 500 1,000 500 1,000 -	2,000 2,000 1,500 1,500 1,000	5,000 5,000 2,500 2,500 2,500
330 to 620 18 to 270 330 to 390 10V 430 to 620 680 to 750 820 to 1000	12.7 12.7 15.0 12.7 15.0 12.7 15.0 12.7 15.0	1,000 800 1,000 500 1,000 500 1,000 -	2,000 1,500 1,500 1,000	5,000 2,500 2,500 2,500
18 to 270 18 to 390 10V 430 to 620 680 to 750 820 to 1000	12.7 15.0 12.7 15.0 12.7 15.0 12.7 15.0	800 1,000 500 1,000 500 1,000 - -	1,500 1,500 1,000 1,000	2,500 2,500 2,500
330 to 390 430 to 620 680 to 750 820 to 1000	15.0 12.7 15.0 12.7 15.0 	1,000 500 1,000 500 1,000 - -	1,500 1,000 1,000	2,500 2,500 2,500
10V 430 to 620 680 to 750 820 to 1000	15.0 12.7 15.0 12.7 15.0 	500 1,000 500 1,000 - -	1,500 1,000 1,000	2,500 2,500
10V 430 to 620 680 to 750 820 to 1000	12.7 15.0 12.7 15.0 	500 1,000 500 1,000 - -	1,000	2,500
10V 430 to 620 680 to 750 820 to 1000	15.0 12.7 15.0 - -	500 1,000 - -	1,000	2,500
430 to 620 680 to 750 820 to 1000	12.7 15.0 - -	500 1,000 - -	1,000	-
430 to 620 680 to 750 820 to 1000	15.0	1,000 - -	1,000	-
820 to 1000	- - -	-	· · · · · · · · · · · · · · · · · · ·	2,500
820 to 1000	-	-	· · · · · · · · · · · · · · · · · · ·	7
	_		1,000	2,000
1100 to 1800			500	1,000
1100 10 1000		500	000	1,000
430 to 620	15.0	1,000	1,000	2,500
12V 680 to 750	-	-	1,000	2,500
V 820 to 1000	_	_	1,000	2,000
	_	_	500	500
1100 to 1800			500	500
18 to 270	12.7	800	1,500	2,000
	15.0	1,000	·	·
330 to 390	12.7	500	1,500	2,000
	15.0	1,000	,	,
14V 430 to 620	12.7	500	1,000	2,000
	15.0	1,000	1,000	2,000
680 to 750	-	-	1,000	2,000
820 to 1000	-	-	1,000	1,500
1100 to 1200	-	-	500	500
1500 to 1800	-	-	500	500
18 to 430	-	-	700	1,000
470 to 620	-	-	500	1,000
20V 680 to 1100	_	-	500	500
1200	_	-	500	500
1500 to 1800	_	-	200	500
5SV 220 to 470	12.7	1,500	3,000	5,000
220 to 270		1,500		
7SV 390 to 510	12.7	1,000	3,000	5,000
220 to 680	15.0	500	_	_
10SV	-	-	1,000	_
SV 430 to 680	15.0	500	-	_
12SV	-	-	1,000	_
220 to 680	15.0	300	-	
14SV	-	-	1,000	
	_	_	700	700
20SV	_	_		
430 to 1000			500	500
5SV 22 to 68	12.7	1,500	-	_
SV 7SV 22 to 68	12.7	1,500	- .	_
(22 to 68V) 10SV 22 to 68	12.7	800	_	_
1450 22 10 66	12.7	800		-
20SV 22 to 68	-		700	700
9H 22 to 47	12.7	1,500	3,000	5,000
H 12H 22 to 47	12.7	800	1,500	2,500
15H 22 to 47	12.7	800	1,500	2,000
23H 22 to 47	-	-	700	1,000
15GF All Voltage range	_	-	800	_
GF 270 to 470	-	-	500	-
23GF 820	_	-	400	_

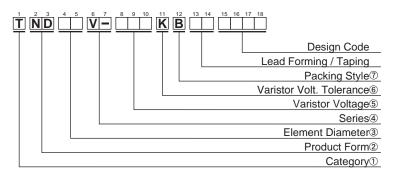
Metal Oxide Varistors TNR[™] Disk Type

METAL OXIDE VARISTORS TNR™

◆FEATURES

- Excellent voltage non-linear coefficient.
 Low clamping voltage.
- •Symmetrical V-I characteristics (No polarity).
- •Fast response.
- •Stable characteristics against repeated surges.
- •Superior temperature characteristics.
- High reliability
- •UL, CSA and VDE recognized components

UL 1449 3rd File : E323623 CSA File : LR97864 VDE File : 118623 •Coating resin : UL94V-0




APPLICATIONS

- Protection for semiconductors from over voltage.
- Protection for electronic instruments from lightning surges.
- Absorption of on-off surges from motors and relays.

Operating Temperature Range: -40 to +85°C Storage Temperature Range: -50 to +125°C

◆PART NUMBERING SYSTEM

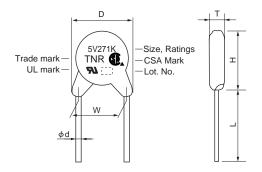
②Product Form			
ND	Disk Type		

3EI	③Element Diameter				
05	φ 5 mm				
07	φ 7 mm				
09	φ 9 mm				
10	φ10 mm				
12	φ12 mm				
14	φ14 mm				
20	φ20 mm				

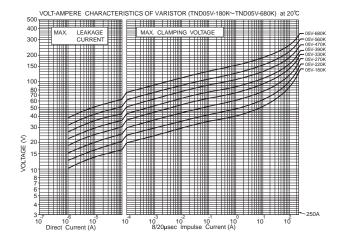
V-	V Series						

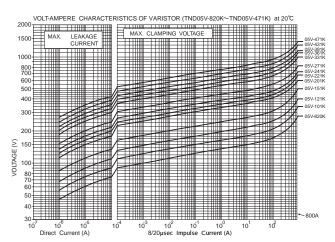
^⑤ Varistor Voltage
The first two digits are significant figures
and the third one denotes the number of
following zeros.

@Varis	stor Volt. Tolerance
K	±10%


⑦Packing Style									
В	Bulk								
Т	Taping								

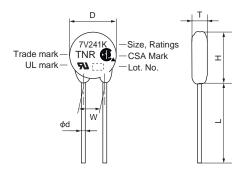
♦STANDARD RATINGS (Type 5V)


				Maximum Rat	ings		Ma	ax.	Capacitance		
Part Number	Previous Part Number (Just for your reference)	Max. Allowable Voltage		Max. Peak Current	Max. Energy	Rated Wattage	Clamping Voltage		Typical @1kHz	Varistor Voltage V0.1mA	T Max.
	(Just for your reference)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND05V-180KB00AAA0	TNR5V180K	11	14		0.4			40	2540	18 (16~ 20)	
TND05V-220KB00AAA0	TNR5V220K	14	18		0.5			48	2090	22 (20~ 24)	
TND05V-270KB00AAA0	TNR5V270K	17	22	250A/1 time	0.7			60	1790	27 (24~ 30)	
TND05V-330KB00AAA0	TNR5V330K	20	26	2504/1 (((1))	0.8	0.01	1	73	1480	33 (30~ 36)	4.5
TND05V-390KB00AAA0	TNR5V390K	25	30	125A/2 times	0.9	0.01	1	86	1310	39 (35~ 43)	4.5
TND05V-470KB00AAA0	TNR5V470K	30	37	123A/2 times	1.1			104	1140	47 (42~ 52)	
TND05V-560KB00AAA0	TNR5V560K	35	44		1.3			123	1000	56 (50~ 62)	
TND05V-680KB00AAA0	TNR5V680K	40	55		1.6			150	870	68 (61~ 75)	
TND05V-820KB00AAA0	TNR5V820K	50	65		2.5			145	400	82 (74~ 90)	4.1
TND05V-101KB00AAA0	TNR5V101K	60	85		3			175	350	100 (90~110)	4.3
TND05V-121KB00AAA0	TNR5V121K	75	100		3.5			210	310	120 (108~132)	4.5
TND05V-151KB00AAA0	TNR5V151K	95	125		4.5			260	270	150 (135~165)	4.8
TND05V-181KB00AAA0	TNR5V181K	110	145		5			325	190	180 (162~198)	4.3
TND05V-201KB00AAA0	TNR5V201K	130	170	800A/1 time	6			355	110	200 (185~225)	4.4
TND05V-221KB00AAA0	TNR5V221K	140	180	000A/T time	6.5	0.1	5	380	110	220 (198~242)	4.5
TND05V-241KB00AAA0	TNR5V241K	150	200	600A/2 times	7.5	0.1	3	415	100	240 (216~264)	4.6
TND05V-271KB00AAA0	TNR5V271K	175	225	000A/Z times	8			475	90	270 (247~303)	4.8
TND05V-331KB00AAA0	TNR5V331K	210	270		9.5			570	80	330 (297~363)	5.1
TND05V-361KB00AAA0	TNR5V361K	230	300		11			620	80	360 (324~396)	5.3
TND05V-391KB00AAA0	TNR5V391K	250	320		12			675	70	390 (351~429)	5.4
TND05V-431KB00AAA0	TNR5V431K	275	350		13.5			745	70	430 (387~473)	5.6
TND05V-471KB00AAA0	TNR5V471K	300	385		15			810	60	470 (423~517)	5.8


◆DIMENSIONS [mm]

D	H	T	L	φd	W
Max.	Max.	Max.	Min.	±0.05	±1.0
7.5	10.0	Ref. to RATINGS	20.0	0.6	5.0

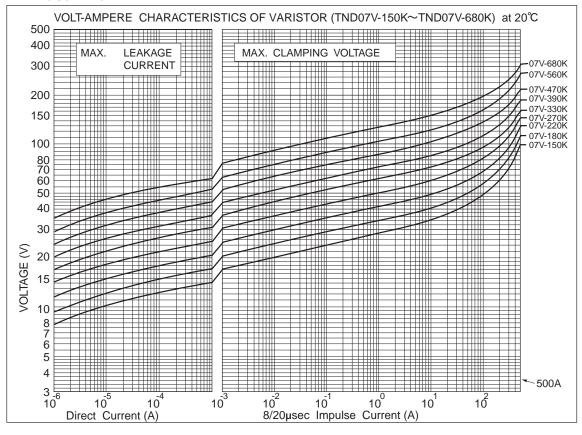
♦V-I CURVE

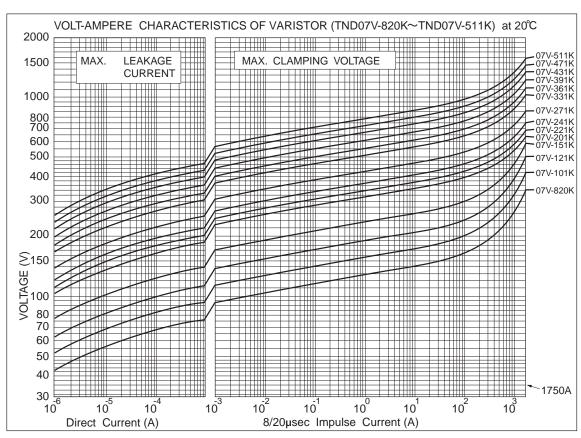

METAL OXIDE VARISTORS TNR™

V Series

♦STANDARD RATINGS (Type 7V)

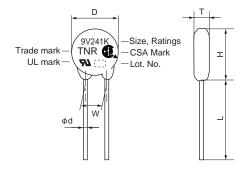
				Maximum Rat	ings		Ма	IX.	Capacitance		
Part Number	Previous Part Number (Just for your reference)	Max. Alle Volta		Max. Peak Current	Max. Energy	Rated Wattage	Clam Volt		Typical @1kHz	Varistor Voltage V1mA	T Max.
	(oust for your reference)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND07V-150KB00AAA0	TNR7V150K	8	12		0.7			30	4600	15 (13~ 17)	4.5
TND07V-180KB00AAA0	TNR7V180K	11	14		0.9			36	3800	18 (16~ 20)	4.5
TND07V-220KB00AAA0	TNR7V220K	14	18		1.1			43	3200	22 (20~ 24)	4.6
TND07V-270KB00AAA0	TNR7V270K	17	22	500A/1 time	1.3			53	2800	27 (24~ 30)	4.7
TND07V-330KB00AAA0	TNR7V330K	20	26		1.6	0.02	2.5	65	2300	33 (30~ 36)	4.9
TND07V-390KB00AAA0	TNR7V390K	25	30	250A/2 times	1.9			77	2100	39 (35~ 43)	4.8
TND07V-470KB00AAA0	TNR7V470K	30	37		2.3			93	1900	47 (42~ 52)	4.9
TND07V-560KB00AAA0	TNR7V560K	35	44		2.7			110	1700	56 (50~ 62)	5.0
TND07V-680KB00AAA0	TNR7V680K	40	55		3.3			135	1500	68 (61~ 75)	5.2
TND07V-820KB00AAA0	TNR7V820K	50	65		5			135	800	82 (74~ 90)	4.1
TND07V-101KB00AAA0	TNR7V101K	60	85		6			165	700	100 (90~110)	4.3
TND07V-121KB00AAA0	TNR7V121K	75	100		7			200	650	120 (108~132)	4.5
TND07V-151KB00AAA0	TNR7V151K	95	125		9			250	600	150 (135~165)	4.8
TND07V-181KB00AAA0	TNR7V181K	110	145		11			300	430	180 (162~198)	4.3
TND07V-201KB00AAA0	TNR7V201K	130	170		12.5			340	250	200 (185~225)	4.4
TND07V-221KB00AAA0	TNR7V221K	140	180	1750A/1 time	13.5			360	230	220 (198~242)	4.5
TND07V-241KB00AAA0	TNR7V241K	150	200		15	0.25	10	395	210	240 (216~264)	4.6
TND07V-271KB00AAA0	TNR7V271K	175	225	1250A/2 times	17			455	190	270 (247~303)	4.8
TND07V-331KB00AAA0	TNR7V331K	210	270		20			545	160	330 (297~363)	5.1
TND07V-361KB00AAA0	TNR7V361K	230	300		23			595	150	360 (324~396)	5.3
TND07V-391KB00AAA0	TNR7V391K	250	320		25			650	140	390 (351~429)	5.4
TND07V-431KB00AAA0	TNR7V431K	275	350		27.5			710	130	430 (387~473)	5.6
TND07V-471KB00AAA0	TNR7V471K	300	385		30			775	120	470 (423~517)	5.8
TND07V-511KB00AAA0	TNR7V511K	320	410		32			845	110	510 (459~561)	6.0


♦DIMENSIONS [mm]



D	H	T	L	φd	W
Max.	Max.	Max.	Min.	±0.05	±1.0
8.5	11.5	Ref. to	20.0	0.6	

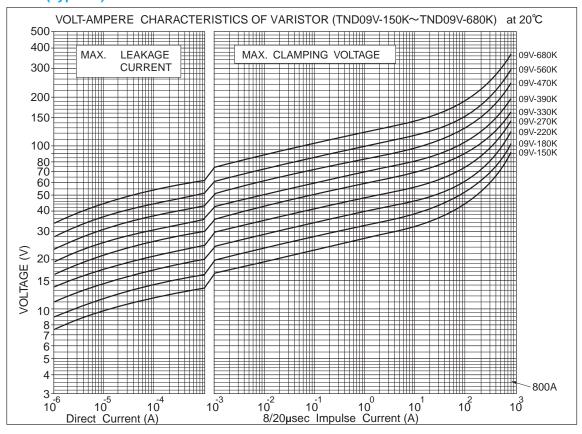
◆V-I CURVE (Type 7V)

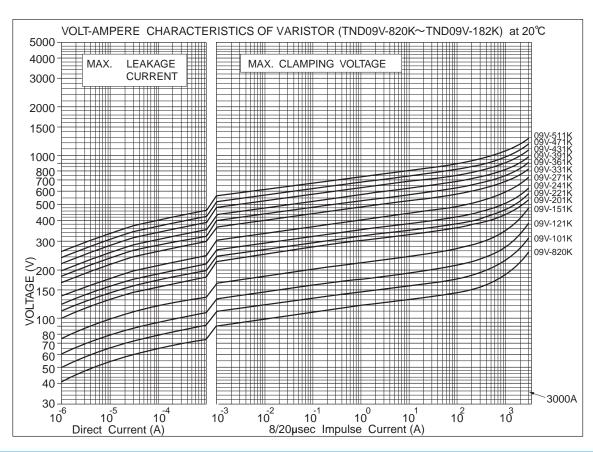

METAL OXIDE VARISTORS TNR™

V Series

♦RATINGS (Type 9V)

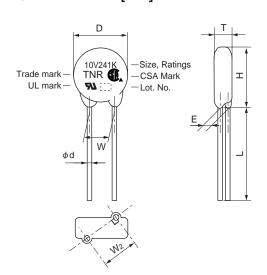
				Maximum Rat	ings		Ma	ax.	Capacitance		_
Part Number	Previous Part Number	Max. All		Max. Peak	Max.	Rated		ping	Typical	Varistor Voltage V _{1mA}	T Max.
T di t i tuino	(Just for your reference)	Voltage		Current	Energy	Wattage	Volt		@1kHz		
		AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)
TND09V-150KB00AAA0	TNR9V150K	8	12		2.0			30	9600	15 (13~ 17)	3.8
TND09V-180KB00AAA0	TNR9V180K	11	14		2.2			36	8000	18 (16~ 20)	3.8
TND09V-220KB00AAA0	TNR9V220K	14	18		2.6			43	7000	22 (20~ 24)	4.0
TND09V-270KB00AAA0	TNR9V270K	17	22	800A/1 time	3.2			53	6000	27 (24~ 30)	4.2
TND09V-330KB00AAA0	TNR9V330K	20	26		4.0	0.02	5	65	5000	33 (30~ 36)	4.5
TND09V-390KB00AAA0	TNR9V390K	25	30	400A/2 times	4.7			77	4500	39 (35~ 43)	4.0
TND09V-470KB00AAA0	TNR9V470K	30	37		5.6			93	4000	47 (42~ 52)	4.2
TND09V-560KB00AAA0	TNR9V560K	35	44		6.7			110	3500	56 (50~ 62)	4.4
TND09V-680KB00AAA0	TNR9V680K	40	55		8.2			135	3200	68 (61~ 75)	4.5
TND09V-820KB00AAA0	TNR9V820K	50	65		10			135	1700	82 (74~ 90)	3.8
TND09V-101KB00AAA0	TNR9V101K	60	85		12			165	1600	100 (90~110)	3.9
TND09V-121KB00AAA0	TNR9V121K	75	100		14.5			200	1400	120 (108~132)	4.1
TND09V-151KB00AAA0	TNR9V151K	95	125		18			250	1300	150 (135~165)	4.4
TND09V-181KB00AAA0	TNR9V181K	110	145		22			300	900	180 (162~198)	4.0
TND09V-201KB00AAA0	TNR9V201K	130	170		25			340	500	200 (185~225)	4.1
TND09V-221KB00AAA0	TNR9V221K	140	180	3000A/1 time	27.5			360	450	220 (198~242)	4.2
TND09V-241KB00AAA0	TNR9V241K	150	200		30	0.25	25	395	400	240 (216~264)	4.3
TND09V-271KB00AAA0	TNR9V271K	175	225	2000A/2 times	35			455	350	270 (247~303)	4.5
TND09V-331KB00AAA0	TNR9V331K	210	270		42			545	300	330 (297~363)	4.8
TND09V-361KB00AAA0	TNR9V361K	230	300		45			595	280	360 (324~396)	5.0
TND09V-391KB00AAA0	TNR9V391K	250	320		50			650	260	390 (351~429)	5.1
TND09V-431KB00AAA0	TNR9V431K	275	350		55			710	240	430 (387~473)	5.3
TND09V-471KB00AAA0	TNR9V471K	300	385		60			775	220	470 (423~517)	5.6
TND09V-511KB00AAA0	TNR9V511K	320	410		67			845	210	510 (459~561)	5.8


♦DIMENSIONS [mm]



D	H	T	L	φd	W
Max.	Max.	Max.	Min.	±0.05	±1.0
11.5	14.5	Ref. to RATINGS	20.0	0.6	5.0

◆V-I CURVE (Type 9V)

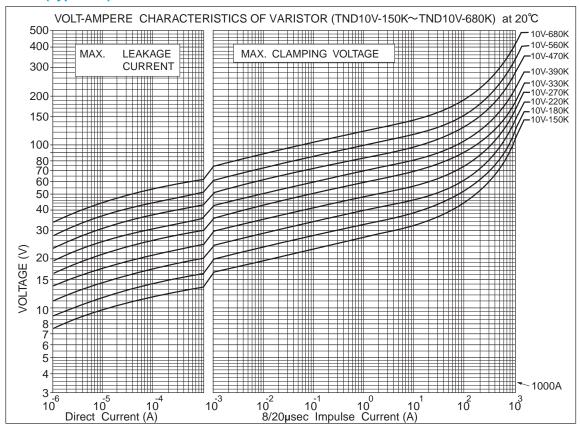


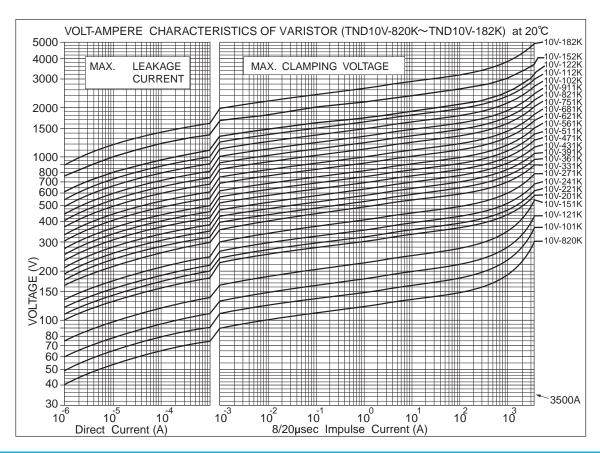
◆RATINGS (Type 10V)

				Maximum Rat	tings		N	/lax.	Capacitance		_	_	1440
Part Number	Previous Part Number	Max. All		Max. Peak Current	Max. Energy	Rated Wattage		mping Itage	Typical @1kHz	Varistor Voltage V _{1m} A	T Max.	±1.0	W2 reference
	(Just for your reference)	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)	(mm)	(mm)
TND10V-150KB00AAA0	TNR10V150K	8	12		2.0			30	9600	15 (13~ 17)	4.5	1.0	7.6
TND10V-180KB00AAA0	TNR10V180K	11	14		2.2			36	8000	18 (16~ 20)	4.6	1.1	7.6
TND10V-220KB00AAA0	TNR10V220K	14	18		2.6			43	7000	22 (20~ 24)	4.7	1.2	7.6
TND10V-270KB00AAA0	TNR10V270K	17	22	1000A/1 time	3.2			53	6000	27 (24~ 30)	4.8	1.3	7.6
TND10V-330KB00AAA0	TNR10V330K	20	26		4.0	0.05	5	65	5000	33 (30~ 36)	5.0	1.5	7.6
TND10V-390KB00AAA0	TNR10V390K	25	30	500A/2 times	4.7			77	4500	39 (35~ 43)	4.9	1.3	7.6
TND10V-470KB00AAA0	TNR10V470K	30	37		5.6			93	4000	47 (42~ 52)	5.0	1.4	7.6
TND10V-560KB00AAA0	TNR10V560K	35	44		6.7			110	3500	56 (50∼ 62)	5.1	1.6	7.7
TND10V-680KB00AAA0	TNR10V680K	40	55		8.2			135	3200	68 (61~ 75)	5.3	1.8	7.7
TND10V-820KB00AAA0	TNR10V820K	50	65		10			135	1700	82 (74~ 90)	4.5	1.1	7.6
TND10V-101KB00AAA0	TNR10V101K	60	85		12			165	1600	100 (90~ 110)	4.7	1.3	7.6
TND10V-121KB00AAA0	TNR10V121K	75	100		14.5			200	1400	120 (108~ 132)	4.9	1.4	7.6
TND10V-151KB00AAA0	TNR10V151K	95	125		18			250	1300	150 (135~ 165)	5.2	1.7	7.7
TND10V-181KB00AAA0	TNR10V181K	110	145		22			300	900	180 (162~ 198)	4.7	1.1	7.6
TND10V-201KB00AAA0	TNR10V201K	130	170		25			340	500	200 (185~ 225)	4.8	1.2	7.6
TND10V-221KB00AAA0	TNR10V221K	140	180		27.5			360	450	220 (198~ 242)	4.9	1.3	7.6
TND10V-241KB00AAA0	TNR10V241K	150	200		30			395	400	240 (216~ 264)	5.0	1.3	7.6
TND10V-271KB00AAA0		175	225		35			455	350	270 (247~ 303)	5.2	1.4	7.6
TND10V-331KB00AAA0		210	270		42			545	300	330 (297~ 363)	5.5	1.6	7.7
TND10V-361KB00AAA0		230	300		45			595	280	360 (324~ 396)	5.7	1.8	7.7
TND10V-391KB00AAA0	TNR10V391K	250	320	3500A/1 time	50			650	260	390 (351~ 429)	5.8	1.9	7.7
TND10V-431KB00AAA0	TNR10V431K	275	350		55	0.4	25	710	240	430 (387~ 473)	6.0	2.0	7.8
TND10V-471KB00A \diamondsuit A0	-	300	385	2500A/2 times	60			775	220	470 (423~ 517)	6.2	2.1	7.8
TND10V-511KB00A \diamondsuit A0		320	410		67			845	210	510 (459~ 561)	6.4	2.3	7.8
TND10V-561KB00A \diamondsuit A0		350	460		67			922	195	560 (504~ 616)	6.7	2.5	7.9
TND10V-621KB00A \diamondsuit A0		385	505		67			1025	180	620 (558~ 682)	7.1	2.7	8.0
TND10V-681KB00A \diamondsuit A0		420	560		67			1120	165	680 (612~ 748)	7.4	2.9	8.0
TND10V-751KB00A \Quad A0		460	615		70			1240	150	750 (675~ 825)	7.8	3.1	8.1
TND10V-821KB00A \Quad A0		510	670		80			1355	140	820 (738~ 902)	8.1	3.4	8.2
TND10V-911KB00A A0		550	745		90			1500	125	910 (819~1001)	8.6	3.7	8.4
TND10V-102KB00A A0 TND10V-112KB00A A0		625	825		100			1650	115	1000 (900~1100)	9.1	4.0	8.5
TND10V-112KB00A\QA0	-	680	895		110			1815	105	1100 (990~1210)	9.7	4.4	8.7
TND10V-122KB00AQA0	-	720	980 1220		120			1950	95	1200 (1080~1320)	10.5	4.7*	8.9** 9.5**
TND10V-152KB00AQA0		860			150			2440	85	1500 (1350~1650)	12.4	5.8*	
INDIOV-102NDUUAVAU	TINK TOV TOZK	1000	1465		183			2970	70	1800 (1700~1980)	14.4	6.9*	10.2**

*E±2 **W2±2

♦DIMENSIONS [mm]

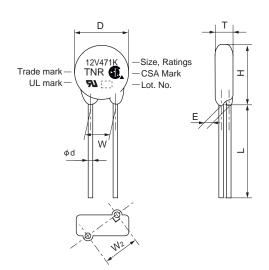

	\Diamond	
Standard	Α	N/A
φ 10 IEC 62368-1:2014 G.8.2 conforming product	S	S


Part Number	D Max.	H Max.	T Max.	L Min.	φd ±0.05	W ±1.0
TND10V-150K to TND10V-511K	11.5	14.5	Ref. to		0.8	7.5
TND10V-561K to TND10V-112K	12.5	15.5	RATINGS	20.0		7.5
TND10V-122K to TND10V-182K	13.5	16.5	IVATINOO			

- ●Common to standard product and IEC 62368-1:2014 G.8.2 conforming product
- ●The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

◆V-I CURVE (Type 10V)

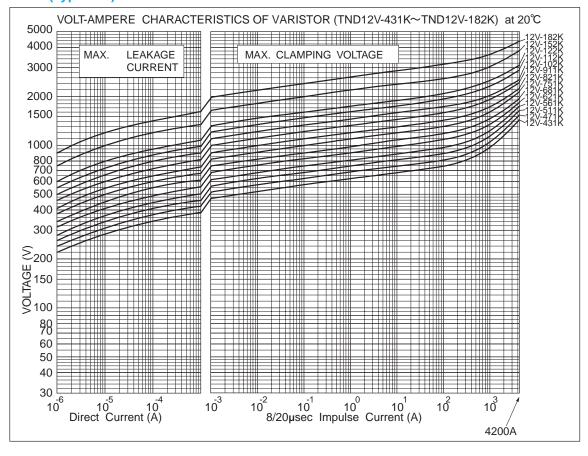
METAL OXIDE VARISTORS TNR™


V Series

◆RATINGS (Type 12V)

				Maximum Rat	ings		ı	Max.	Capacitance		_	_	1440
Part Number	Previous Part Number (Just for your reference)	Max. Allowable Voltage		Max. Peak Current	Max. Energy	Rated Wattage	Clamping Voltage		Typical @1kHz	Varistor Voltage V _{1mA}	Max.	±1.0	W2 reference
	(,	AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)	(mm)	(mm)
TND12V-431KB00AAA0	TNR12V431K	275	350		55			710	375	430 (387~ 473)	6.0	2.0	7.8
TND12V-471KB00AAA0	TNR12V471K	300	385		60			775	345	470 (423~ 517)	6.2	2.1	7.8
TND12V-511KB00AAA0	TNR12V511K	320	410		67			845	330	510 (459~ 561)	6.4	2.3	7.8
TND12V-561KB00AAA0	TNR12V561K	350	460		67			922	305	560 (504~ 616)	6.7	2.5	7.9
TND12V-621KB00AAA0	TNR12V621K	385	505		67			1025	280	620 (558~ 682)	7.1	2.7	8.0
TND12V-681KB00AAA0	TNR12V681K	420	560	4,200A/1 time	67			1120	260	680 (612~ 748)	7.4	2.9	8.0
TND12V-751KB00AAA0	TNR12V751K	460	615		70	0.4	25	1240	235	750 (675~ 825)	7.8	3.1	8.1
TND12V-821KB00AAA0	TNR12V821K	510	670	3,000A/2 times	80			1355	220	820 (738~ 902)	8.1	3.4	8.2
TND12V-911KB00AAA0	TNR12V911K	550	745		90			1500	195	910 (819~ 1001)	8.6	3.7	8.4
TND12V-102KB00AAA0	TNR12V102K	625	825		100			1650	180	1000 (900~ 1100)	9.1	4.0	8.5
TND12V-112KB00AAA0	TNR12V112K	680	895		110			1815	165	1100 (990~ 1210)	9.7	4.4	8.7
TND12V-122KB00AAA0	TNR12V122K	720	980		120			1950	150	1200 (1080~ 1320)	10.5	4.7*	8.9**
TND12V-152KB00AAA0	TNR12V152K	860	1220		150			2440	135	1500 (1350 ~ 1650)	12.4	5.8*	9.5**
TND12V-182KB00AAA0	TNR12V182K	1000	1465		183			2970	110	1800 (1700~ 1980)	14.4	6.9*	10.2**

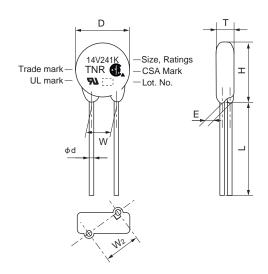
*E±2 **W2±2


◆DIMENSIONS [mm]

Part Number	D Max.	H Max.	T Max.	L Min.	φd ±0.05	W ±1.0
TND12V-431K to TND12V-102K	14.0	17.0			0.8	7.5
TND12V-112K	45.0	100	Ref. to	20		
TND12V-122K	15.0		RATINGS	20		
TND12V-152K to TND12V-182K	16.0	19.0				

●The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

◆V-I CURVE (Type 12V)

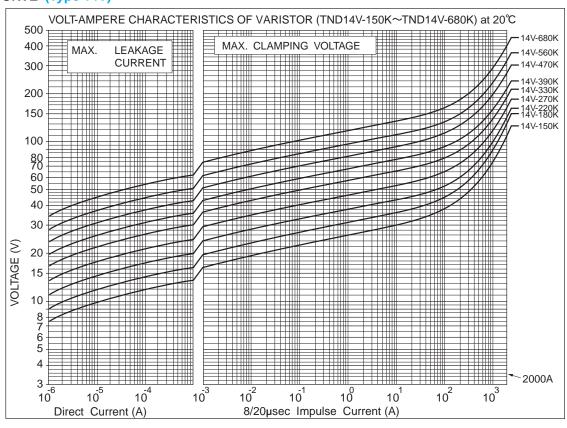


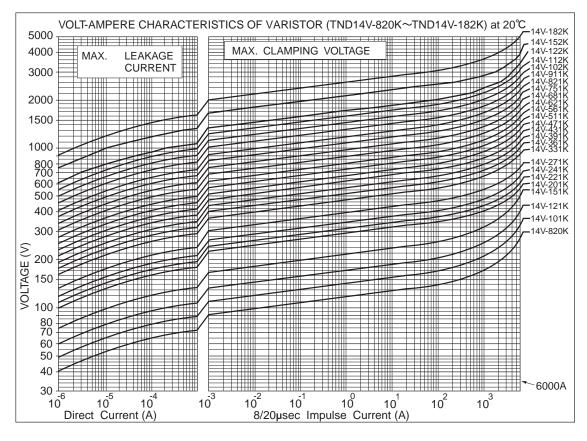
◆RATINGS (Type 14V)

				Maximum Rat	ings		N	/lax.	Capacitance				_	_	1440
Part Number	Previous Part Number	Max. All		Max. Peak	Max.	Rated	1	mping	Typical	Varis	tor Volta V1mA	age	T Max.	E ±1.0	W2 Reference
T dit Humber	(Just for your reference)	Volta	<u> </u>	Current	Energy	Wattage	-	oltage @1kHz							
		AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)		(V)		(mm)	(mm)	(mm)
TND14V-150KB00AAA0	TNR14V150K	8	12		3.6			30	19500	15 (13~	17)	4.5	1.0	7.6
TND14V-180KB00AAA0	TNR14V180K	11	14		4.3			36	16500	18 (16~	20)	4.6	1.1	7.6
TND14V-220KB00AAA0	TNR14V220K	14	18		5.3			43	13500	22 (20~	24)	4.7	1.2	7.6
TND14V-270KB00AAA0	TNR14V270K	17	22	2000A/1 time	6.5			53	12000	27 (24~	30)	4.8	1.4	7.6
TND14V-330KB00AAA0	TNR14V330K	20	26		7.9	0.1	10	65	10000	33 (30~	36)	5.0	1.6	7.7
TND14V-390KB00AAA0	TNR14V390K	25	30	1000A/2 times	9.4			77	9000	39 (35~	43)	4.9	1.3	7.6
TND14V-470KB00AAA0	TNR14V470K	30	37		11			93	8000	47 (42~	52)	5.0	1.5	7.6
TND14V-560KB00AAA0	TNR14V560K	35	44		13			110	7500	56 (50~	62)	5.1	1.7	7.7
TND14V-680KB00AAA0	TNR14V680K	40	55		16		_	135	6500	68 (61~	75)	5.3	2.0	7.8
TND14V-820KB00AAA0	TNR14V820K	50	65		20			135	3000	82 (74~	90)	4.5	1.1	7.6
TND14V-101KB00AAA0	TNR14V101K	60	85		25			165	2700	100 (90~	110)	4.7	1.3	7.6
TND14V-121KB00AAA0	TNR14V121K	75	100		30			200	2500	120 (132)	4.9	1.4	7.6
TND14V-151KB00AAA0	TNR14V151K	95	125		37			250	2300	150 (165)	5.2	1.7	7.7
TND14V-181KB00AAA0	TNR14V181K	110	145		45			300	1650	180 (198)	4.7	1.1	7.6
TND14V-201KB00AAA0	TNR14V201K	130	170		50			340	950	200 (225)	4.8	1.2	7.6
TND14V-221KB00AAA0	TNR14V221K	140	180	6000A/1 time	55			360	850	220 (242)	4.9	1.3	7.6
TND14V-241KB00AAA0	TNR14V241K	150	200		60			395	800	240 (264)	5.0	1.4	7.6
TND14V-271KB00AAA0	TNR14V271K	175	225	5000A/2 times	70			455	700	270 (303)	5.2	1.5	7.6
TND14V-331KB00AAA0	TNR14V331K	210	270		80			545	600	330 (363)	5.5	1.7	7.7
TND14V-361KB00AAA0	TNR14V361K	230	300		90			595	550	360 (396)	5.7	1.8	7.7
TND14V-391KB00AAA0	TNR14V391K	250	320		100			650	500	390 (429)	5.8	1.9	7.7
TND14V-431KB00AAA0	TNR14V431K	275	350		110	0.6	50	710	460	430 (473)	6.0	2.1	7.8
TND14V-471KB00AAA0	TNR14V471K	300	385		125			775	420	470 (517)	6.2	2.2	7.8
TND14V-511KB00AAA0	TNR14V511K	320	410		136			845	390	510 (561)	6.4	2.4	7.9
TND14V-561KB00AAA0	TNR14V561K	350	460		136			922	360	560 (616)	6.7	2.6	7.9
TND14V-621KB00AAA0	TNR14V621K	385	505		136			1025	330	620 (682)	7.1	2.8	8.0
TND14V-681KB00AAA0	TNR14V681K	420	560		136			1120	310	680 (748)	7.4	3.0	8.1
TND14V-751KB00AAA0	TNR14V751K	460	615	F000 A /4 /	150			1240	280	750 (825)	7.8	3.3	8.2
TND14V-821KB00AAA0	TNR14V821K	510	670	5000A/1 time	165			1355	250	820 (902)	8.1	3.5	8.3
TND14V-911KB00AAA0	TNR14V911K	550	745	45004/04	180			1500	230		(819~1	/	8.6	3.9	8.5
TND14V-102KB00AAA0	TNR14V102K	625	825	4500A/2 times	200			1650	210		(900~1	,	9.1	4.2	8.6
TND14V-112KB00AAA0	TNR14V112K	680	895		220			1815	190	'	(990~1	- /	9.7	4.6	8.8
TND14V-122KB00AAA0	TNR14V122K	720	980		240			1950	170		(1080~1	,	10.5	4.9*	9.0**
TND14V-152KB00AAA0	TNR14V152K	860	1220		300			2440	150		(1350~1	/	12.4	6.0*	9.6**
TND14V-182KB00AAA0	TNR14V182K	1000	1465		360			2970	120	1800	(1700~1	1980)	14.4	7.1*	10.3**

*E±2 **W2±2

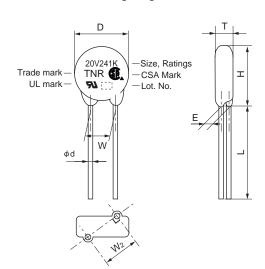
♦DIMENSIONS [mm]




Part Number	D Max.	H Max.	T Max.	L Min.	φd ±0.05	W ±1.0
TND14V-150K to TND14V-511K	15.5	18.5	Ref. to		0.8	7.5
TND14V-561K to TND14V-112K	16.0	19.0	RATINGS	20		7.5
TND14V-122K to TND14V-182K	17.0	20.5				

●The product with less than 620V of varistor voltage, taping is possible. Please refer to taping and forming specifications. The lead type parallel to a straight prepares, too.

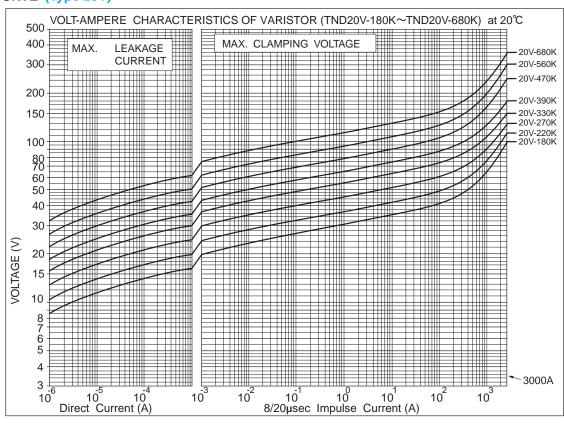
◆V-I CURVE (Type 14V)

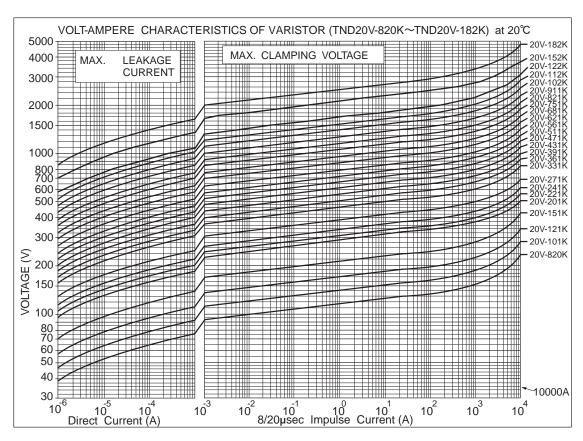


◆RATINGS (Type 20V)

				Maximum Rat	ings		N	/lax.	Capacitance		_	_	14/0
Part Number	Previous Part Number	Max. Allo		Max. Peak	Max.	Rated		mping	Typical	Varistor Voltage V1mA	T Max.	±1.0	W2 Reference
	(Just for your reference)	Volta	J .	Current	Energy	Wattage	-	ltage	@1kHz		()	()	()
TUDON' (COLUDAN A A A	T 11 D 201//201/	AC (Vrms)	. ,	8/20µs(A)	2ms(J)	(W)	(A)	(V)	(pF)	(V)	(mm)	(mm)	(mm)
TND20V-180KB00AAA0	TNR20V180K	11	14		12			36	39000	18 (16~ 20)	5.1	1.1	10.1
TND20V-220KB00AAA0	TNR20V220K	14	18		14			43	33000	22 (20~ 24)	5.2	1.2	10.1
TND20V-270KB00AAA0	TNR20V270K	17	22	3000A/1 time	17			53	28000	27 (24~ 30)	5.3	1.4	10.1
TND20V-330KB00AAA0	TNR20V330K	20	26	00004/0/	21	0.2	20	65	24000	33 (30~ 36)	5.5	1.6	10.1
TND20V-390KB00AAA0	TNR20V390K	25	30	2000A/2 times	25			77	21000	39 (35~ 43)	5.5	1.3	10.1
TND20V-470KB00AAA0	TNR20V470K	30	37		30			93	19000	47 (42~ 52)	5.6	1.5	10.1
TND20V-560KB00AAA0	TNR20V560K	35	44		36			110	17000	56 (50~ 62)	5.7	1.7	10.1
TND20V-680KB00AAA0		40	55		44			135	15000	68 (61~ 75)	5.8	2.0	10.2
TND20V-820KB00AAA0	TNR20V820K	50	65		40			135	6700	82 (74~ 90)	4.9	1.2	10.1
TND20V-101KB00AAA0	TNR20V101K	60	85		50			165	6100	100 (90~ 110)	5.1	1.4	10.1
TND20V-121KB00AAA0	TNR20V121K	75	100		60			200	5600	120 (108~ 132)	5.3	1.5	10.1
TND20V-151KB00AAA0	TNR20V151K	95	125		75			250	5100	150 (135~ 165)	5.6	1.8	10.2
TND20V-181KB00AAA0	TNR20V181K	110	145		85			300	3900	180 (162~ 198)	5.1	1.2	10.1
TND20V-201KB00AAA0	TNR20V201K	130	170		100			340	2700	200 (185~ 225)	5.2	1.2	10.1
TND20V-221KB00AAA0	TNR20V221K	140	180	10000A/1 time	110			360	2500	220 (198~ 242)	5.3	1.3	10.1
TND20V-241KB00AAA0	TNR20V241K	150	200		120			395	2300	240 (216~ 264)	5.4	1.4	10.1
TND20V-271KB00AAA0	TNR20V271K	175	225	7000A/2 times	135			455	2000	270 (247~ 303)	5.6	1.5	10.1
TND20V-331KB00AAA0	TNR20V331K	210	270		160			545	1700	330 (297~ 363)	5.9	1.7	10.1
TND20V-361KB00AAA0	TNR20V361K	230	300		180			595	1500	360 (324~396)	6.1	1.9	10.2
TND20V-391KB00AAA0	TNR20V391K	250	320		195			650	1400	390 (351~429)	6.2	2.0	10.2
TND20V-431KB00AAA0	TNR20V431K	275	350		215	1.0	100	710	1300	430 (387~473)	6.4	2.1	10.2
TND20V-471KB00AAA0	TNR20V471K	300	385		250	1.0	100	775	1200	470 (423~517)	6.6	2.3	10.3
TND20V-511KB00AAA0	TNR20V511K	320	410		273			845	1100	510 (459~ 561)	6.8	2.4	10.3
TND20V-561KB00AAA0	TNR20V561K	350	460		273			922	1000	560 (504~616)	7.1	2.6	10.3
TND20V-621KB00AAA0	TNR20V621K	385	505		273			1025	900	620 (558~682)	7.5	2.9	10.4
TND20V-681KB00AAA0	TNR20V681K	420	560		273			1120	830	680 (612~748)	7.8	3.1	10.5
TND20V-751KB00AAA0	TNR20V751K	460	615		300			1240	750	750 (675~ 825)	8.2	3.4	10.6
TND20V-821KB00AAA0	TNR20V821K	510	670	7500A/1 time	325			1355	700	820 (738~ 902)	8.5	3.6	10.6
TND20V-911KB00AAA0	TNR20V911K	550	745		360			1500	620	910 (819~1001)	9.0	4.0	10.8
TND20V-102KB00AAA0	TNR20V102K	625	825	6500A/2 times	400			1650	560	1000 (900~1100)	9.5	4.3	10.9
TND20V-112KB00AAA0	TNR20V112K	680	895		440			1815	510	1100 (990~1210)	10.1	4.7	11.0
TND20V-122KB00AAA0	TNR20V122K	720	980		480			1950	450	1200 (1080~1320)	10.8	5.1*	11.2**
TND20V-152KB00AAA0	TNR20V152K	860	1220		600			2440	390	1500 (1350~1650)	12.8	6.2*	11.8**
TND20V-182KB00AAA0	TNR20V182K	1000	1465		720			2970	340	1800 (1700~1980)	14.8	7.4*	12.4**

*E±2 **W2±2


♦DIMENSIONS [mm]



Part Number	D Max.	H Max.	T Max.	L Min.	φd ±0.05	W ±1.0
TND20V-180K to TND20V-511K	21.5	24.5	Ref. to		0.8	10.0
TND20V-561K to TND20V-112K	22.5	25.5	Ratings	20		10.0
TND20V-122K to TND20V-182K	23.5	28.0	ixatings			

◆V-I CURVE (Type 20V)

♦GENERAL SPECIFICATIONS

Item	Test Conditions	Specifications							
Standard Test	20±15℃, 85%RH Max.								
Condition									
Varistor Voltage	Voltage across varistor at specified current.	Satisfy the specification							
Variotor Voltago	Type Current CmA	datisty the specification							
	5V 0.1								
	7V, 9V, 10V, 12V, 14V, 20V 1.0								
Maximum Allowable	Maximum continuous AC voltage (50 to 60Hz AC) and maximum DC voltage which can be	Satisfy the specification							
Voltage	applied.								
Maximum Peak	Maximum surge current (8/20µs pulse wave to be applied once, or twice, 5 minutes apart) for	Satisfy the specification							
Surge Current	varistor voltage change within±10% of the initial value.								
Energy Rating	Maximum energy (2 ms. square wave to be applied once) for varistor voltage change within	Satisfy the specification							
	±10% of the initial value.								
Rated Wattage	Maximum power (50 to 60Hz AC power to be applied for 1000 hours at 85±2°C) for variston	Satisfy the specification							
	voltage change within ±10% of the initial value.								
Maximum Clamping	Maximum voltage across varistor when 8/20µs rated current surge is applied.	Satisfy the specification							
Voltage									
Capacitance	Varistor's capacitance at 1kHz, standard test condition.	For reference only.							
Voltage Temperature	VcmA at 85°C − VcmA at 25°C VcmA at 25°C × 1/60 ×100 (%/°C)	Within ±0.05%/℃							
Coefficient	VcmA at 25°C								
	VcmA : Actual varistor voltage								
Insulation	Short circuit the two leads of varistor, and put the varistor body into metal balls (1.6mm	The varistor shall withstand							
	diameter) leaving 2mm epoxy coating outside. Then, apply 2.5kVrms between the leads and	with no abnormality.							
	the metal balls for 60±5 sec								

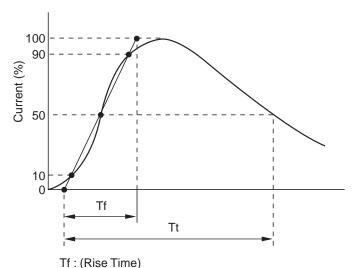
◆ENVIRONMENTAL CHARACTERISTICS

Item	Test Conditions	Specifications
High Temperature	The specimen shall be subjected 125±2°C for 1000±12 hours without load.	ΔVcmA/VcmA≦±5%
Storage (Dry heat)		However, on varistors have
		nominal varistor voltages
		from 15V to 68V, the varistor
		voltage change shall be
		ΔVcmA/VcmA≦±10%
Low Temperature	The specimen shall be subjected -40±2°C for 1000±12 hours without load.	ΔVcmA/VcmA≦±5%
Storage		
Damp heat (Humidity)	The specimen shall be subjected to 40±2℃, 90 to 95%RH for 1000±12 hours without load.	ΔVcmA/VcmA≦±5%
Temperature Cycle	The temperature cycle shown below shall be repeated 5 cycles.	ΔVcmA/VcmA≦±5%
	-40±3°C, 30 minutes ⇔ +85±2°C, 30 minutes	No remarkable damage
High Temperature	The specimen shall be subjected to 85±2℃ with the maximum allowable voltage for 1000±12	ΔVcmA/VcmA≦±10%
Operating	hours.	
Damp heat Operating	The specimen shall be subjected to 40±2°C, 90 to 95%RH with the maximum allowable voltage	ΔVcmA/VcmA≦±10%
	for 1000±12 hours.	

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours. Note: For 42V battery line, please contact our sales office.

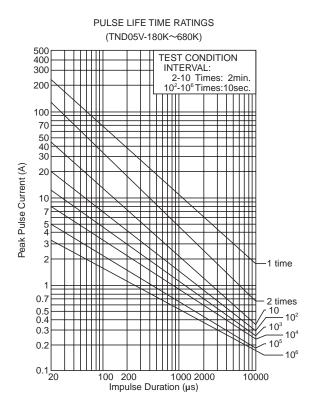
♦MECHANICAL CHARACTERISTICS

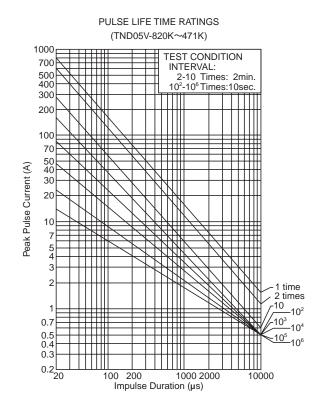
Item			Test Co	onditio	ns		Specifications
Resistance to						of 350±10℃ to a point 2.0	ΔVcmA/VcmA≦±5%
Soldering Heat	to 2.5 mm from th	e body of the unit, b	e held	there fo	r 3 ⁺¹ sec an	d then be stored at room	No remarkable damage
	temperature for 1	to 2 hours. The △ Vcm					
	or						
	Each lead shall be	dipped into a solder	of 260±10℃ to a point 2.0				
	to 2.5 mm from th	e body of the unit, be	held th	nd then be stored at room			
	temperature for 1 t	to 2 hours. The Δ Vcm	A and n	nechani	cal damage	shall be examined.	
Solderability	Each lead shall be	dipped into a methar	nol solut	ion (abo	out 25%) of r	osin for 5 to 10 sec.	At least, 95% of the leads
	Then each lead sh	all be dipped into a se	older.				shall be covered with
	Solder	Pb free (Sn-3.0Ag-0).5Cu)	Eute	ctic (Sn/Pb)		solder uniformly.
	Solder Temp.	245±5℃		2	35±5℃		
	Dipping Time		2±0.5se				
	Dipping Depth	1.5 to 2.0r	No abnormality such as				
Lead Pull Strength			nd suspend specified weight toward direction of lead axis.				
	Туре	Lead Diameter		ight			disconnection.
	5V, 7V, 9V	0.6mm		N			
	10V, 12V, 14V, 20V)N			ΔVcmA/VcmA≦±5%
Lead Bend Strength	1				ū	t the varistor body by 90°,	The leads shall not
		• .	arry ou	t the or	peration in the	ne opposite direction and	disconnect, slacken and
		the original position.			1		peel off.
	Туре	Lead Diameter		ight			
	5V, 7V, 9V	0.6mm	_	N			
	10V, 12V, 14V, 20V		_	N			
Vibration		ly on vibrator, and cor	nduct th	e follwir	ig vibration t	est.	No remarkable appearance
	Peak-to-Peak an	•					abnormality.
		ncy range: 10Hz to 5					
	Sweeping time:		ΔVcmA/VcmA≦±5%				
		one minute for 10Hz	→55Hz	→10H	Z		
		ration of vibration :					
		ns of X, Y and Z. Two	hours e	ach.			
	Six hours total						

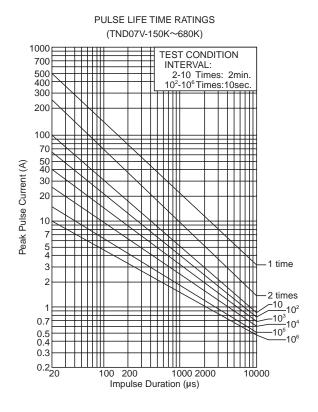


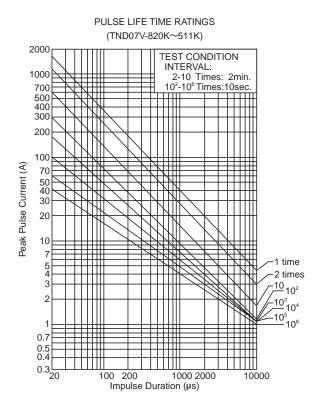
PULSE LIFE TIME RATINGS

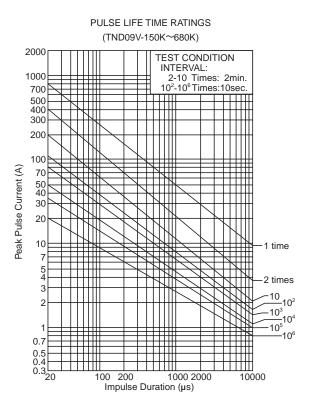
When the following factors are different from the specified conditions, the peak pulse current should be revised based on the PULSE LIFE TIME RATINGS.

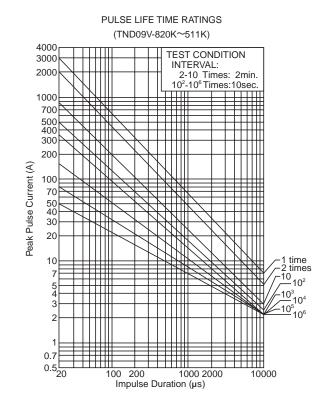

- Impulse duration time
- Number of impulse

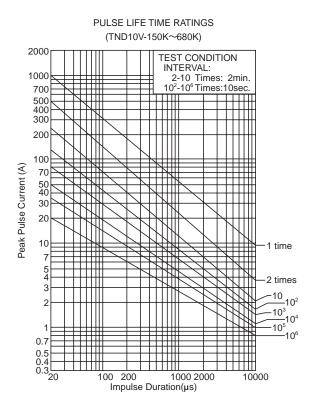

(Impulse Current Wave Form)

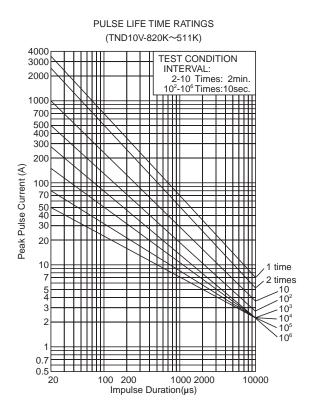



Tr. (Rise Time)

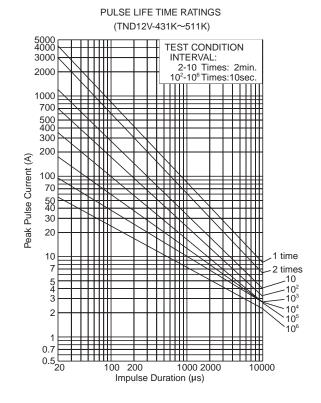

Tt: (Impulse Duration)

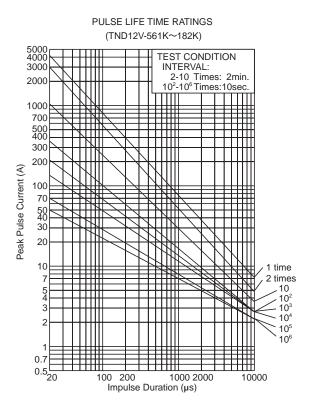


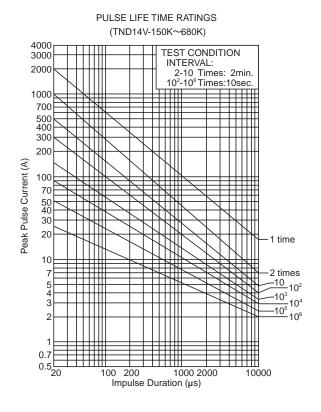


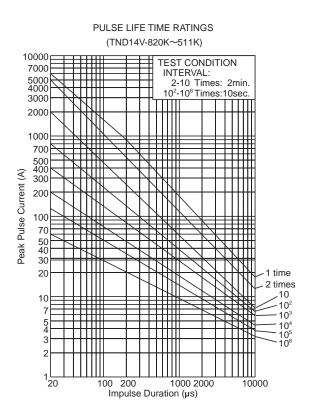


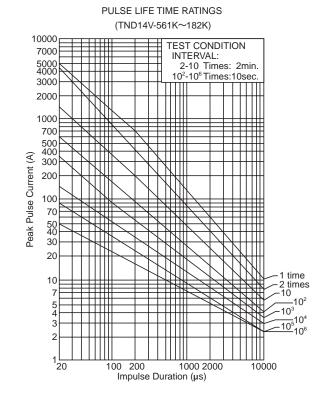


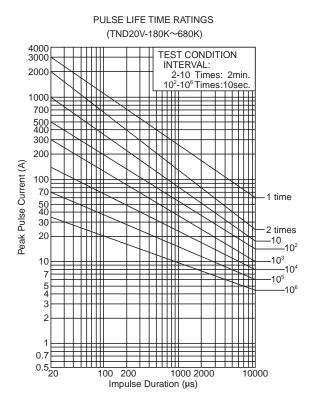


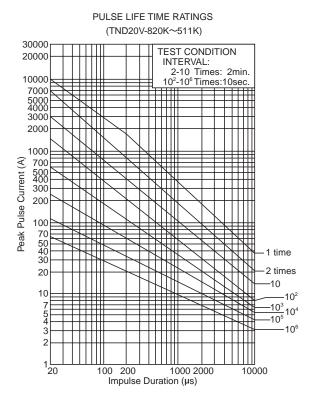


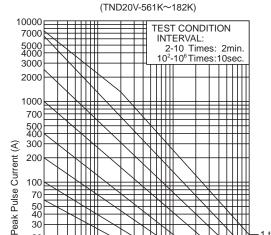











V series

30

20 10

54

1<u>L</u>

PULSE LIFE TIME RATINGS

100 200

Impulse Duration(µs)

1000 2000

1 time

-10 10² -10³10⁴

-10⁵ -10⁶

10000

Our newly developed TNR SV series is to prevent from being caught fire even very high surge energy is applied.

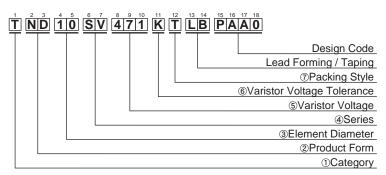
Thus electric appliance using TNR SV series can be much safer like TNR SE series.

◆FEATURES

- •Little scatter at the destruction under over voltage.
- ●Environmental characteristics (Upgrade)
 High temperature operating: 125°C,1000hours
 Damp heat operating: 85°C,85%RH, 1000hours
 Temperature cycle: -40°C ⇔ +125°C, 1000cycles
- •Coating resin doesn't burn under the flammability test of UL.
- •Material of Coating resin:UL94V-0 and Halogen free
- ●UL, CSA and VDE recognized components

UL1449 File: E323623 CSA File: 097864 0 000 VDE File: 118623

CQC File number varies according to a part number. Pleasee refer to us.


●AEC-Q200 compliant: ϕ 10~ ϕ 14 (220V~680V) Please contact Chemi-con for more details, test data, information.

◆APPLICATIONS

- Protection for semiconductors from over voltage.
- Protection for electronic instruments from lightning surge.
- Absorption of on-off surge from motors and relays.

Operating Temperature Range : -40 \sim +125 $^{\circ}$ C Storage Temperature Range : -50 \sim +150 $^{\circ}$ C

◆PART NUMBERING SYSTEM

①Category				
	Metal Oxide			
Т	Varistor			
	TNR			

②Product Form				
ND Disk Type				

3Element Diameter						
05 φ5 mm						
07	φ7 mm					
10	φ10 mm					
12	φ12 mm					
14	φ14 mm					
20	φ20 mm					

SV SV series							

⑤Varistor Voltage
The first two digits are significant figures
and the third one denotes the number of
following zeros.

©Varistor Voltage Tolerance					
K	±10%				

⑦Packing Style					
B Bulk					
Т	T Taping				

◆CAUTIONS and WARNINGS

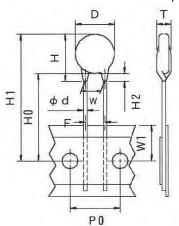
Varistors may be short-circuit or be destroyed, in case of absorbing over rating voltage or over rating surge. Please connect a current fuse or a circuit breaker in series with varistors.

SVSeries

◆RATING AND CHARACTERISTICS

WRATING AND CHARACTERISTICS				Maximum Ratings			May Conscitones		Capacitance	W 14 W 16	
		Max. Allowable Max. Peak Max. Rated		1 '		Typical	Varistor Voltage V1mA	Thickness			
Part Number	Previous Part Number	Volta		Current	Energy	Wattage		Itage	@1kHz	5SV : V0.1mA	Т
		AC (Vrms)	DC(V)	8/20us (A)	2ms (J)	(W)	(A)	(V)	(pF)	(V)	MAX.
TND05SV221KTBAAAA0	TNR5SV221K-T25	140	180	0/2000 (/1)	6.5	(**)	(71)	380	110	220 (198 to 242)	5.0
TND05SV241KTBAAAA0	TNR5SV241K-T25	150	200		7.5			415	100	240 (216 to 264)	5.1
TND05SV271KTBAAAA0	TNR5SV271K-T25	175	225	800A/1time	8.0	0.1	5	475	90	270 (247 to 303)	5.4
TND05SV431KTBAAAA0	TNR5SV431K-T25	275	350	600A/2time	13.5	0.1		745	70	430 (387 to 473)	6.2
TND05SV471KTBAAAA0	TNR5SV471K-T25	300	385		15.0			810	60	470 (423 to 517)	6.4
TND07SV221KTBAAAA0	TNR7SV221K-T25	140	180		13.5			360	230	220 (198 to 242)	5.0
TND07SV241KTBAAAA0	TNR7SV241K-T25	150	200		15			395	210	240 (216 to 264)	5.1
TND07SV271KTBAAAA0	TNR7SV271K-T25	175	225	1,750A/1time	17			455	190	270 (247 to 303)	5.2
TND07SV431KTBAAAA0	TNR7SV431K-T25	275	350	1,250A/2times	27.5	0.25	10	710	130	430 (387 to 473)	6.2
TND07SV471KTBAAAA0	TNR7SV471K-T25	300	385	1,200/ 12	30			775	120	470 (423 to 517)	6.3
TND07SV511KTBAAAA0	TNR7SV511K-T25	320	410		32			845	110	510 (459 to 561)	6.6
TND10SV221KTLBPAA0	TNR10SV221K417-T71	140	180		27.5			360	450	220 (198 to 242)	5.4
TND10SV241KTLBPAA0	TNR10SV241K417-T71	150	200		30			395	400	240 (216 to 264)	5.5
TND10SV271KTLBPAA0	TNR10SV271K417-T71	175	225		35			455	350	270 (247 to 303)	5.7
TND10SV431KTLBPAA0	TNR10SV431K417-T71	275	350		55			710	240	430 (387 to 473)	6.5
TND10SV471KTLBPQA0	TNR10SV471K□-T71	300	385		60			775	220	470 (423 to 517)	6.7
TND10SV511KTLBPQA0	TNR10SV511K□-T71	320	410		67			845	210	510 (459 to 561)	6.9
TND10SV561KTLBP \diamondsuit A0		350	460	3,500A/1time	67	0.4	25	922	195	560 (504 to 616)	7.2
· ·		385	505	2,500A/2times	67	0.4	20	1025	180	620 (558 to 682)	7.5
TND10SV681KTLBP A0		420	560		67			1120	165	680 (612 to 748)	7.5
TND10SV751KB00AQA0		460	615		70			1240	150	750 (675 to 825)	8.2
TND10SV821KB00AQA0	TNR10SV821K□	510	670		80			1355	140	820 (738 to 902)	8.6
TND10SV911KB00A\QA0	TNR10SV911K□	550	745		90			1500	125	910 (819 to 1001)	9.1
TND10SV102KB00A\A0		625	825		100			1650	115	1000 (900 to 1100)	9.6
TND12SV431KTLBPAA0	TNR12SV431K417-T71	275	350		55			710	375	430 (387 to 473)	6.5
TND12SV471KTLBPAA0	TNR12SV471K417-T71	300	385		60			775	345	470 (423 to 517)	6.7
TND12SV511KTLBPAA0	TNR12SV511K417-T71	320	410		67			845	330	510 (459 to 561)	6.9
TND12SV561KTLBPAA0	TNR12SV561K417-T71	350	460		67			922	305	560 (504 to 616)	7.2
TND12SV621KTLBPAA0	TNR12SV621K417-T71	385	505	4,200A/1time	67			1025	280	620 (558 to 682)	7.5
TND12SV681KTLBPAA0	TNR12SV681K417-T71	420	560	3,000A/2times	67	0.4	25	1120	260	680 (612 to 748)	7.9
TND12SV751KB00AAA0	TNR12SV751K	460	615	3,0007/2011/63	70			1240	235	750 (675 to 825)	8.4
TND12SV821KB00AAA0	TNR12SV821K	510	670		80			1355	220	820 (738 to 902)	8.8
TND12SV911KB00AAA0	TNR12SV911K	550	745		90			1500	195	910 (819 to 1001)	9.2
TND12SV102KB00AAA0	TNR12SV102K	625	825		100			1650	180	1000 (900 to 1100)	9.7
TND14SV221KTLBPAA0	TNR14SV221K417-T71	140	180		55			360	850	220 (198 to 242)	5.4
TND14SV241KTLBPAA0	TNR14SV241K417-T71	150	200		60			395	800	240 (216 to 264)	5.5
TND14SV271KTLBPAA0	TNR14SV271K417-T71	175	225	6,000A/1time	70			455	700	270 (247 to 303)	5.7
TND14SV431KTLBPAA0	TNR14SV431K417-T71	275	350	5.000A/2times	110			710	460	430 (387 to 473)	6.5
TND14SV471KTLBPAA0	TNR14SV471K417-T71	300	385	3,000/ (2111103	125			775	420	470 (423 to 517)	6.7
TND14SV511KTLBPAA0	TNR14SV511K417-T71	320	410		136			845	390	510 (459 to 561)	6.9
TND14SV561KTLBPAA0	TNR14SV561K417-T71	350	460		136	0.6	50	922	360	560 (504 to 616)	7.2
TND14SV621KTLBPAA0	TNR14SV621K417-T71	385	505		136	0.0	"	1025	330	620 (558 to 682)	7.5
TND14SV681KTLBPAA0	TNR14SV681K417-T71	420	560		136			1120	310	680 (612 to 748)	7.9
TND14SV751KB00AAA0	TNR14SV751K	460	615	5,000A/1time	150			1240	280	750 (675 to 825)	8.4
TND14SV821KB00AAA0	TNR14SV821K	510	670	4,500A/2times	165			1355	250	820 (738 to 902)	8.8
TND14SV911KB00AAA0	TNR14SV911K	550	745		180			1500	230	910 (819 to 1001)	9.2
TND14SV102KB00AAA0	TNR14SV102K	625	825		200			1650	210	1000 (900 to 1100)	9.7
TND20SV221KB00AAA0	TNR20SV221K	140	180		110		$\vdash \vdash$	360	2500	220 (198 to 242)	5.4
TND20SV241KB00AAA0	TNR20SV241K	150	200		120			395	2300	240 (216 to 264)	5.5
TND20SV241KB00AAA0	TNR20SV271K	175	225	10,000A/1time	135			455	2000	270 (247 to 303)	5.7
TND20SV431KB00AAA0	TNR20SV431K	275	350	7,000A/2times	215			710	1300	430 (387 to 473)	6.5
TND20SV471KB00AAA0	TNR20SV471K	300	385	,,000, (201163	250			775	1200	470 (423 to 517)	6.7
TND20SV511KB00AAA0	TNR20SV511K	320	410		273			845	1100	510 (459 to 561)	6.9
TND20SV511KB00AAA0	TNR20SV511K	350	460		273	1.0	100	922	1000	560 (504 to 616)	7.2
TND20SV621KB00AAA0	TNR20SV621K	385	505		273	1.0	100	1025	900	620 (558 to 682)	7.2
TND20SV621KB00AAA0	TNR20SV621K	420	560		273			1120	830	680 (612 to 748)	7.0
TND20SV751KB00AAA0				7,500A/1time					750	750 (675 to 825)	
TND20SV821KB00AAA0	TNR20SV751K	460 510	615 670	6,500A/2times	300			1240	750		8.4
	TNR20SV821K	510 550			325			1355		820 (738 to 902)	8.8
TND20SV911KB00AAA0	TNR20SV911K	550 635	745		360			1500	620	910 (819 to 1001)	9.2
TND20SV102KB00AAA0	TNR20SV102K	625	825	L	400			1650	560	1000 (900 to 1100)	9.7

SVSeries

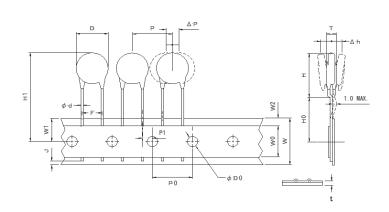

◆ DIMENSIONS [mm]

Refer to the table below for standard packing styles.

Rating	TND05SV	TND07SV	TND10SV	TND12SV	TND14SV	TND20SV
221K to 511K*	Taping	Taping	Taping	Taping	Taping	Bulk
561K to 681K	_	_	Taping	Taping	Taping	Bulk
751K to 102K	_	_	Bulk	Bulk	Bulk	Bulk

 $^{^{\}ast}$ The rating range for TND05SV is 221K to 471K

·TND05SV and TND07SV are taping models.



Symbol	5SV	7SV				
D	7.5Max	9.0 Max.				
Н	13.0Max	14.0 Max.				
Т	Ref. to R	RATINGS				
φd	0.6±	0.05				
P0	12.7±0.3					
W1	9.0	±0.5				
W	5.0:	±1.0				
F	5.0±0.8					
НО	20.0±1.5 1.0					
H1	31.5 Max.	32.5 Max.				
H2	5.0 Max.					

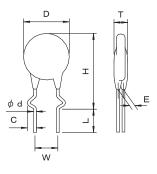
·Taping specifications of TND10SV/TND12SV/TND14SV

Taping Code: TLB

Symbol	10SV	12SV	14SV	
D	12.5 MAX.	14.5 MAX.	16.5 MAX.	
φd	0.8±0.05	←	←	
Р	15.0±1.0	15.0±1.0	30.0±1.0	
P0	15.0±0.3	←	←	
φD0	4.0±0.2	←	←	
P1	3.75±0.5	←	←	
W1	9.0±0.5	←	←	
F	7.5±0.8	←	←	
Δh	0±2.0	←	←	
ΔΡ	0±1.3	←	←	
w	18.0 +1.0 -0.5	←	←	
W0	5.0 MIN.	←	←	
W2	3.0 MAX.	←	←	
t	0.6±0.3	←	←	
Н	20.0 MAX.	23.5 MAX	25.0 MAX.	
H0	19.0±1.0	←	←	
H1	46.5 MAX.	←	←	
J	6.0 MAX.	←	←	

SVSeries

◆DIMENSION


Unit: mm D Н L φd W Ε Part Number MAX. MAX. MIN. ±0.05 ±1.0 ±1.0 TND10SV751KB00AQA0 3.1 TND10SV821KB00A♦A0 3.4 13.0 18.0 TND10SV911KB00A A0 3.7 TND10SV102KB00A♦A0 4.0 TND12SV751KB00AAA0 3.1 TND12SV821KB00AAA0 3.4 15.0 20.0 7.5 TND12SV911KB00AAA0 3.7 TND12SV102KB00AAA0 4.0 TND14SV751KB00AAA0 3.3 TND14SV821KB00AAA0 3.5 16.5 21.5 TND14SV911KB00AAA0 3.9 TND14SV102KB00AAA0 4.2 0.8 TND20SV221KB00AAA0 20.0 1.3 TND20SV241KB00AAA0 1.4 TND20SV271KB00AAA0 1.5 22.5 27.5 TND20SV431KB00AAA0 2.1 TND20SV471KB00AAA0 2.3 TND20SV511KB00AAA0 2.4 TND20SV561KB00AAA0 10.0 2.6 TND20SV621KB00AAA0 23.0 28.5 2.9 TND20SV681KB00AAA0 3.1 TND20SV751KB00AAA0 3.4 TND20SV821KB00AAA0 3.6 23.5 29.5 TND20SV911KB00AAA0 4.0 TND20SV102KB00AAA0 4.3

◆MARKING

•TND10SV/TND12SV/TND14SV with the rating 751K or above and TND20SV are packaged in bulk.

Lead forming Type

3 71 -							
Part No.	TND10SV***KBESA A0	TND12SV***KBESAAA0	TND14SV***KBESAAA0	TND20SV***KBESAAA0			
Fait No.	\lozenge : P80 See the above section.						
Forming Code		BES	(310)				
D		Refer to each spec (see the above table).				
Т		Refer to each spec (see the above table).					
Н	23.0 Max.	25.0 Max.	26.5 Max.	33.5 Max.			
L	5.0 ± 1.0	←	←	←			
W	7.5 ± 1.0 ← ← 10.0 ± 1.0						
Φd	0.8 ± 0.05 ← ← ←						
С	2.0 ± 0.5 ← ← ←						
Е	Refer to each spec (see the above table).						

♦V-I CURVE

V-I characteristics and PULE LIFE TIME RATINGS are same as those of V series. Please see V-I CURVE and PULE LIFE TIME RATINGS of V series.

CROSS REFERENCE TABLE (Common to standard product and IEC 62368-1:2014 G.8.2 conforming product)

		<u> </u>	
TNR SV SERIES	TNR V SERIES	V-I CURVE GO TO REF. PAGE	PULSE LIFE TIME RATINGS GO TO REF. PAGE
TND05SV221K	TND05V-221K		
to	to	P.59	P.74
TND05SV471K	TND05V-471K		
TND07SV221K	TND07V-221K		
to	to	P.61	P.75
TND07SV511K	TND07V-511K		
TND10SV221K	TND10V-221K		
to	to	P.65	P.76
TND10SV102K	TND10V-102K		
TND12SV431K	TND12V-431K		
to	to	P.67	P.76 to 77
TND12SV102K	TND12V-102K		
TND14SV221K	TND14V-221K		
to	to	P.69	P.77
TND14SV102K	TND14V-102K		
TND20SV221K	TND20V-221K		
to	to	P.71	P.78
TND20SV102K	TND20V-102K		

♦GENERAL SPECIFICATIONS

Item		Test Con	ditions	Specifications
Standard Test	20±15℃, 85%RH Max.	_		
Condition				
Varistor Voltage	The voltage between the t	wo terminals measured a	at CmA DC is called Varistor Voltage.	Satisfy the specification
	The measurement shall be	e made as fast as possible	e to avoid heat affection.	
	Туре	Current CmA		
	5SV	0.1		
	Others	1.0		
Maximum Allowable	Maximum continuous AC	voltage (50 to 60Hz AC	c) and maximum DC voltage which can be	Satisfy the specification
Voltage	applied.			
Maximum Peak	Maximum surge current (8	Satisfy the specification		
Surge Current	varistor voltage change wi			
Energy Rating	Maximum energy (2 ms.	Satisfy the specification		
	±10% of the initial value.			
Rated Wattage	Maximum power (50 to 60	Satisfy the specification		
	change within ±10% of the			
Maximum Clamping	Maximum voltage across v	Satisfy the specification		
Voltage				
Capacitance	Varistor's capacitance at 1	kHz, standard test condi	tion.	For reference only.
Voltage Temperature	VC at 125℃-VC at VC at 25℃	Within ±0.05%/℃(≦681K)		
Coefficient	VC at 25°C	Within ±0.10%/℃(751K≦)		
			VC : Actual varistor voltage	
Insulation	Short circuit the two leads	of varistor, and put the v	aristor body into metal balls (1.6mm diameter)	The varistor shall withstand
	leaving 2mm resin coating	outside. Then, apply 2.5	kVrms between the leads and the metal balls for	with no abnormality.
	60±5 sec.			

◆ENVIRONMENTAL CHARACTERISTICS

Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected 150±21 for 1000±12 hours without load.	ΔVCmA/VCmA≦±10%
Low Temperature Storage	The specimen shall be subjected -40±21 for 1000±12 hours without load.	ΔVCmA/VCmA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 85±21, 80 to 85%RH for 1000±12 hours without load.	ΔVCmA/VCmA≦±5%
Temperature Cycle	The temperature cycle shown below shall be repeated 1000 cycles. -40±31, 30 minutes ⇔ +125±21, 30 minutes	ΔVCmA/VCmA≦±5% No remarkable damage
High Temperature Operating	The specimen shall be subjected to 125±21 with the maximum allowable voltage for 1000± 12 hours.	ΔVCmA/VCmA≦±10%
Damp heat Operating	The specimen shall be subjected to 85±21, 80 to 85%RH with the maximum allowable voltage for 1000±12 hours.	ΔVCmA/VCmA≦±10%

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life.

Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

SVSeries

♦MECHANICAL CHARACTERISTICS

Item		Test Con	ditions		Specifications	
Resistance to	Each lead shall be dip	pped into a solder bath havir	ng a temperature o	of 350±10°C to a point 2.0	ΔVCmA/VCmA≦±5%	
Soldering Heat	to 2.5 mm from the bo	No remarkable damage				
	temperature for 1 to 2					
	or					
	Each lead shall be dip					
	to 2.5 mm from the bo					
	· · · · · · · · · · · · · · · · · · ·	hours. The $\Delta V1mA$ and me				
Solderability		pped into a methanol solution	n (about 25%) of r	osin for 5 to 10 sec.	At least, 95% of the leads	
	Then each lead shall I	be dipped into a solder.		7	shall be covered with solder	
	Solder P	b free (Sn-3.0Ag-0.5Cu)	Eutectic (Sn/Pb)		uniformly.	
	Solder Temp.	245±5℃	235±5℃			
	Dipping Time	2±0.5sec.				
	Dipping Depth	1.5 to 2.0mm (from t	• /			
Lead Pull Strength	Fix varistor body, and	suspend specified weight to	oward direction of	lead axis.	No abnormality such as	
	Lead diameter	disconnection.				
	φ0.8mm	ΔVCmA/VCmA≦±5%				
Lead Bend Strength	The varistor shall be s	No remarkable damage as				
	shall be applied in the The terminal shall gra	remarkable the innner ceramic element or terminal open.				
	The damage of the te					
	Type	Lead Diameter	Force]	· .	
	5SV, 7SV	0.6mm	10N	1		
	10SV, 12SV, 14SV, 20	0SV 0.8mm	10N	1		
Vibration	Married resident leaders	n vibrator, and conduct the	f = 11 =		No remarkable apperance	
	Peak-to-Peak ampli	abnormality.				
	Vibration frequency				ΔVCmA/VCmA ≦±5%	
	Sweeping time:	range . To to SSHZ				
		e minute for 10Hz → 55Hz -	→ 10U -			
				7.01		
	Direction and duration hours total.	on of vibration : Three direct	tions of X, Y, and	Z. 2 hours each. 6		
	nouro total.					
Flammability test	The varistor shall be s	subjected 60 sec. application	ns of test flame.		No catching fire, and no	
					flaming drops.	
	Burnar : Bunsen gas t					
	Diameter of flame noz					
		en shall be fixed horizonal.				
	Point of app					

SV Series Low varistor voltage

By using the resin properties of the SV series to a low varistor voltage products, it has achieved a high heat resistance and temperature cycle resistance. Low varistor voltage SV series is for automotive in compliance with the AEC-Q200.

♦FEATURES


- High temperature operating: 1,000 hours at 125℃.
- Damp heat oprerating : 1,000 hours at 85°C/85%RH.
- Temperature cycle : -40°C⇔+125°C, 1000cycle.
- Material of Coating resin:UL94V-0 and Halogen free.
- AEC-Q200 compliant : Please contact Chemi-con for more details, test data, information.

◆APPLICATIONS

- Absorption of automotive load dump surge.
- Absorption of ignition-off surge.
- Absorption of switching surge of horn, motor, and relay.
- Protection of automotive electronics and semi conductors.

Operating Temperature Range : -40 \sim +125°C Storage Temperature Range : -50 \sim +150°C

◆PART NUMBERING SYSTEM

①Category					
	Metal Oxide				
Т	Varistor				
	TNR				

②Product Form						
ND Disk Type						
•						

3Element Diameter						
5 φ5mm						
7 φ7mm						
10	10 φ10mm					
14	φ14mm					
20	φ20mm					

Series					
SV	SV series				

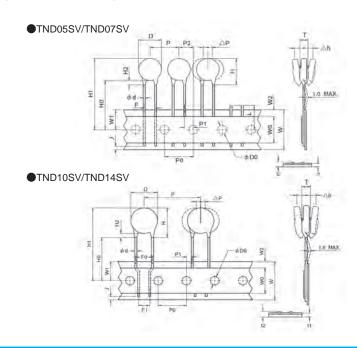
⑤Varistor Voltage
The first two digits are significant figures
and the third one denotes the number of
folowing zeros.

@Varis	©Varistor Voltage Tolerance					
K	±10%					

⑦Packing Style						
В	Bulk					
Т	Taping					

SVSeries Low varistor voltage

◆RATING AND CHARACTERISTICS


			Maximum Ratings						ax.	Capacitance	Varistor Voltage	
Part Number Previous Part Number		Max. All Volt		Max.Peak Current	Max. Energy	Max.Applicable voltage for short period /5 minutes	Rated Wattage		nping age	Typical @1kHz	V1mA 5SV : V0.1mA	Thickness T — MAX.
		AC(Vrms)	DC(V)	8/20µs(A)	2ms(J)	DC(V)	(W)	(A)	(V)	(pF)	(V)	- IVIAA.
TND05SV220KTBAAAA0	TNR5SV220K-T25	12	16		0.5	24			48	3600	22 (20~24)	5.0
TND05SV270KTBAAAA0	TNR5SV270K-T25	15	19		0.7	29			60	3100	27 (24~30)	5.0
TND05SV330KTBAAAA0	TNR5SV330K-T25	18	24		0.8	36			73	2500	33 (30~36)	5.5
TND05SV390KTBAAAA0	TNR5SV390K-T25	22	28	125A	0.9	42	0.01	1	86	2300	39 (35~43)	5.0
TND05SV470KTBAAAA0	TNR5SV470K-T25	26	34	/2 times	1.1	50			104	2000	47 (42~52)	5.0
TND05SV560KTBAAAA0	TNR5SV560K-T25	30	42		1.3	50			123	1700	56 (50~62)	5.5
TND05SV680KTBAAAA0	TNR5SV680K-T25	40	55		1.6	65			150	1500	68 (61~75)	5.5
TND07SV220KTBAAAA0	TNR7SV220K-T25	12	16		1.1	24			43	5400	22 (20~24)	5.0
TND07SV270KTBAAAA0	TNR7SV270K-T25	15	19		1.3	29			53	4800	27 (24~30)	5.0
TND07SV330KTBAAAA0	TNR7SV330K-T25	18	24		1.6	36			65	3900	33 (30~36)	5.5
TND07SV390KTBAAAA0	TNR7SV390K-T25	22	28	250A	1.9	42	0.02	2.5	77	3600	39 (35~43)	5.0
TND07SV470KTBAAAA0	TNR7SV470K-T25	26	34	/2 times	2.3	50			93	3300	47 (42~52)	5.0
TND07SV560KTBAAAA0	TNR7SV560K-T25	30	42		2.7	50			110	2900	56 (50~62)	5.5
TND07SV680KTBAAAA0	TNR7SV680K-T25	40	55		3.3	65			135	2600	68 (61~75)	5.5
TND10SV220KTBAAAA0	TNR10SV220K-T25	12	16		2.6	24			43	12000	22 (20~24)	6.0
TND10SV270KTBAAAA0	TNR10SV270K-T25	15	19		3.2	29			53	11000	27 (24~30)	6.0
TND10SV330KTBAAAA0	TNR10SV330K-T25	18	24		4.0	36			65	8500	33 (30~36)	6.5
TND10SV390KTBAAAA0	TNR10SV390K-T25	22	28	500A	4.7	42	0.05	5	77	7600	39 (35~43)	6.0
TND10SV470KTBAAAA0	TNR10SV470K-T25	26	34	/2 times	5.6	50			93	6800	47 (42~52)	6.0
TND10SV560KTBAAAA0	TNR10SV560K-T25	30	42		6.7	50			110	6000	56 (50~62)	6.5
TND10SV680KTBAAAA0	TNR10SV680K-T25	40	55		8.2	65			135	5400	68 (61~75)	6.5
TND14SV220KTBAAAA0	TNR14SV220K-T25	12	16		5.3	24			43	23000	22 (20~24)	6.0
TND14SV270KTBAAAA0	TNR14SV270K-T25	15	19		6.5	29			53	21000	27 (24~30)	6.0
TND14SV330KTBAAAA0	TNR14SV330K-T25	18	24		7.9	36			65	17000	33 (30~36)	6.5
TND14SV390KTBAAAA0	TNR14SV390K-T25	22	28	1000A	9.4	42	0.1	10	77	16000	39 (35~43)	6.0
TND14SV470KTBAAAA0	TNR14SV470K-T25	26	34	/2 times	11	50			93	14000	47 (42~52)	6.0
TND14SV560KTBAAAA0	TNR14SV560K-T25	30	42		13	50			110	13000	56 (50~62)	6.5
TND14SV680KTBAAAA0	TNR14SV680K-T25	40	55		16	65			135	11000	68 (61~75)	6.5
TND20SV220KB00AAA0	TNR20SV220K	12	16		14	24			43	56000	22 (20~24)	6.0
TND20SV270KB00AAA0	TNR20SV270K	15	19		17	29			53	48000	27 (24~30)	6.0
TND20SV330KB00AAA0	TNR20SV330K	18	24		21	36			65	41000	33 (30~36)	6.5
TND20SV390KB00AAA0	TNR20SV390K	22	28	2000A	25	42	0.2	20	77	36000	39 (35~43)	6.0
TND20SV470KB00AAA0	TNR20SV470K	26	34	/2 times	30	50			93	33000	47 (42~52)	6.0
TND20SV560KB00AAA0	TNR20SV560K	30	42		36	50			110	29000	56 (50~62)	6.5
TND20SV680KB00AAA0	TNR20SV680K	40	55		44	65			135	26000	68 (61~75)	6.5

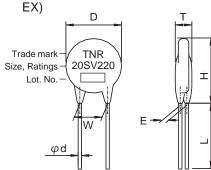
◆DIMENSION

TND05SV/TND07SV/TND10SV/TND14SV: Taping product is normal specifications.

Taping Code: TBA (T25) Unit: mm

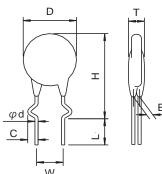
Symbol	5SV	7SV	10SV	14SV
D	8.0 Max.	9.0 Max.	12.0 Max.	16.0 Max.
φd	0.6±0.05	←	0.8±0.05	←
Р	12.7±1.0	←	25.4±1.0	←
P0	12.7±0.3	←	12.7±0.3	←
φD0	4.0±0.2	←	4.0±0.2	←
P1	3.85±0.7	←	2.6±0.5	←
P2	6.35±1.3	←	-	-
W1	9.0±0.5	←	9.0±0.5	←
F	5.0±0.8	←	-	[]
F0		-	7.5±0.8	←
F1	-	-	5.0 Nom.	←
Δh	0±2.0	←	0±2.0	←
ΔΡ	0±1.0	←	0±1.0	←
W	18.0 +1.0	←	18.0 ^{+1.0} _{-0.5}	←
W0	5.0 Min.	←	5.0 Min.	←
t1	0.6±0.3	←	0.6±0.3	←
t2	1.5 Max.	←	1.5 Max.	←
W2	3.0 Max.	←	3.0 Max.	←
H0	20.0 + 1.5	←	19.0 Min.	←
Н	11.0 Max.	12.0 Max.	17.0 Max.	20.0 Max.
H1	29.0 Max.	30.0 Max.	41.5 Max.	43.5 Max.
H2	3.0 Max.	←	5.0 Max.	←
J	6.0 Max.	←	6.0 Max.	←
L	11.0 Max.	←	-	-

SVSeries Low varistor voltage


DIMENSION

TND20SV: Bulk only

Stlaight lead Type


Straight lead Type						Unit : mm
Part Number	D MAX.	H MAX.	L MIN.	φd ±0.05	W ±1.0	E ±1.0
TND20SV220KB00AAA0						1.2
TND20SV270KB00AAA0						1.4
TND20SV330KB00AAA0						1.6
TND20SV390KB00AAA0	22.5	27.0	20.0	0.8	10	1.3
TND20SV470KB00AAA0						1.5
TND20SV560KB00AAA0						1.7
TND20SV680KB00AAA0						2.0

◆MARKING

Lead forming Type

Part No.	TND20SV***KBESAAA0
Forming Code	BES (310)
D	refer to each spec.
Т	refer to each spec.
Н	30.5 MAX.
L	5.0 ± 1.0
W	10.0 ± 1.0
φd	0.8 ± 0.05
С	2.0 ± 0.5
E	refer to each spec.

♦V-I CURVE

V-I characteristics and PULE LIFE TIME RATINGS are same as those of V series. Please see V-I CURVE and PULE LIFE TIME RATINGS of V series.

CROSS REFERENCE TABLE

TNR SV SERIES	TNR V SERIES	V-I CURVE GO TO REF. PAGE	PULSE LIFE TIME RATINGS GO TO REF. PAGE	
TND05SV220K	TND05V-220K			
TND05SV270K	TND05V-270K			
TND05SV330K	TND05V-330K			
TND05SV390K	TND05V-390K	P.59	P.74	
TND05SV470K	TND05V-470K			
TND05SV560K	TND05V-560K			
TND05SV680K	TND05V-680K			
TND07SV220K	TND07V-220K			
TND07SV270K	TND07V-270K			
TND07SV330K	TND07V-330K			
TND07SV390K	TND07V-390K	P.61	P.75	
TND07SV470K	TND07V-470K			
TND07SV560K	TND07V-560K			
TND07SV680K	TND07V-680K			
TND10SV220K	TND10V-220K			
TND10SV270K	TND10V-270K			
TND10SV330K	TND10V-330K			
TND10SV390K	TND10V-390K	P.65	P.76	
TND10SV470K	TND10V-470K			
TND10SV560K	TND10V-560K			
TND10SV680K	TND10V-680K			
TND14SV220K	TND14V-220K			
TND14SV270K	TND14V-270K			
TND14SV330K	TND14V-330K			
TND14SV390K	TND14V-390K	P.69	P.77	
TND14SV470K	TND14V-470K			
TND14SV560K	TND14V-560K			
TND14SV680K	TND14V-680K			
TND20SV220K	TND20V-220K			
TND20SV270K	TND20V-270K			
TND20SV330K	TND20V-330K			
TND20SV390K	TND20V-390K	P.71	P.78	
TND20SV470K	TND20V-470K			
TND20SV560K	TND20V-560K			
TND20SV680K	TND20V-680K			

◆GENERAL SPECIFICATIONS

Item		Test Con	ditions	Specifications
Standard Test Condition	20±15°C, 85%RH Max.			-
Varistor Voltage	The voltage between the two		t CmA DC is called Varistor Voltage. le to avoid heat affection.	Satisfy the specification
	Туре	Current CmA	7	
	5SV	0.1]	
	Others	1.0		
Maximum Allowable Voltage	Maximum continuous AC v	Satisfy the specification		
Maximum Peak Surge Current	Maximum surge current (8/20μs pulse wave to be applied twice, 5 minutes apart) for varistor voltage change within ±10% of the initial value.			Satisfy the specification
Energy Rating	Maximum energy (2ms square wave to be applied once) for varistor voltage change within ±10% of the initial value.			Satisfy the specification
Rated Wattage	Maximum power (50 to 60Hz/AC power to be applied for 1000 hours at 125°C) for varistor voltage			Satisfy the specification
	change within ±10% of the			
Maximum Clamping Voltage	Maximum voltage across varistor when 8/20μs rated current surge is applied.			Satisfy the specification
Capacitance	Varistor's capacitance at 1kHz, standard test condition.			For reference only.
Voltage Temperature Coefficient	VC at 125°C −VC at 25°C VC at 25°C × 1/100 (%/°C)			Within ±0.05%/°C
			VC: Actual Varistor Voltage	
Maximum Applicable Voltage for a Short Period (5 minutes)	Maximum DC voltage to be	e applied for only 5 minu	tes.	ΔVCmA/VCmA≦±15%

◆ENVIRONMENTAL CHARACTERISTICS

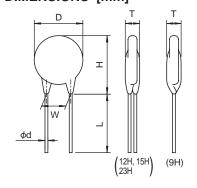
Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected 150±2°C for 1000±12 hours without load.	ΔVCmA/VCmA≦±10%
Low Temperature Storage	The specimen shall be subjected $-40\pm2^{\circ}$ C for 1000 ± 12 hours without load.	ΔVCmA/VCmA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 85±2°C, 80 to 85%RH for 1000±12 hours without load.	ΔVCmA/VCmA≦±10%
Temperature Cycle	The temperature cycle shown below shall be repeated 1000 cycles.	ΔVCmA/VCmA≦±10%
	-40±3°C, 30 minutes ⇔ +125±2°C, 30 minutes	No remarkable damage
High Temperature	The specimen shall be subjected to 125±2°C with the maximum allowable voltage for	ΔVCmA/VCmA≦±10%
Operating	1000±12 hours.	
Damp heat Operating	The specimen shall be subjected to 85±2°C, 80 to 85%RH with the maximum allowable voltage for	ΔVCmA/VCmA≦±10%
	1000±12 hours.	

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

SVSeries Low varistor voltage

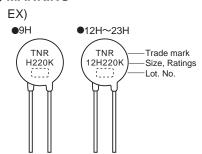
♦MECHANICAL CHARACTERISTICS

Item		Test Co	onditions		Specifications
Resistance to		e dipped into a solder bath ha			ΔVCmA/VCmA≦±5%
Soldering Heat		e body of unit, be held there f			No remarkable damage
	· ·	to 2 hours. The ΔV1mA and r	nechanical damage	shall be examined.	
	or	attended to the control of the first feet		1000 1000 1000 1000	
		e dipped into a solder bath ha	•	·	
		e body of the unit, be held the to 2 hours. The $\Delta V1mA$ and r			
Solderability		e dipped into a methanol solut			At least, 95% of the leads
Solderability		nall be dipped into a solder.	1011 (about 25 %) 01 1	osiii loi 3 to 10 sec.	shall be covered with solder
	Solder	Pb free (Sn-3.0Ag-0.5Cu)	Eutectic (Sn/Pb)	1	uniformly.
	Solder Temp.	245±5°C	235±5℃	-	umomiy.
	Dipping Time	2±0.5se		1	
	Dipping Depth	1.5 to 2.0mm (fron		1	
Lead Pull Strength		plying the load keeping the ur	*/	conds in axial direction	No abnormality such as
	Type	Lead Diameter	Force	7	disconnection.
	5SV.7SV	0.6mm	10N	1	ΔVCmA/VCmA≦±5%
	10SV,14SV,20SV	0.8mm	10N	1	
Lead Bend Strength	The unit shall be s be applied in the a	all be secured with its terminal kept vertical and the weight specified below in the axial direction.			No remarkable damage as remarkable the innner ceramic element or terminal
		in back to original position. Th			open.
	Type	Lead Diameter	Force		
	5SV,7SV	0.6mm	5N		
	10SV,14SV,20SV	0.8mm	5N		
Vibration	Mount varistor boo	dy on vibrator, and conduct th	e following vibration	test.	No remarkable apperance
	Peak-to-Peak ar	nplitude: 1.5mm, Acceleration	on : 5G		abnormality.
	Vibration freque	ncy range : 10 to 500Hz			ΔVCmA/VCmA≦±5%
	Sweeping time:	Approximately 20 minutes for	10Hz→500Hz→10H	z	
				Z. 2 hours each. 6 hours total.	
Flammability test	The varistor shall l	be subjected 60 sec. applicat	ons of test flame.		No catching fire, and no
	Burnar : Buncon a	as burner 9000kcal / m ³			flaming drops,
	Diameter of flame				
		simen shall be fixed horizona	ı		
		application shall be approxim		nocimon	
	FUITIL OI	application shall be approxim	atery ceriter or the S	pecinien .	



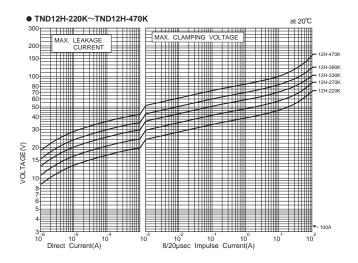
♦STANDARD RATINGS

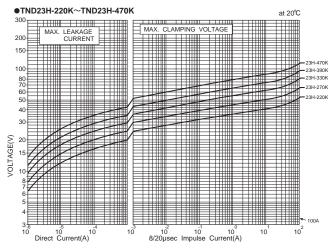
Operating Temperature Range: -40 to +125℃ Storage Temperature Range: -50 to +150℃

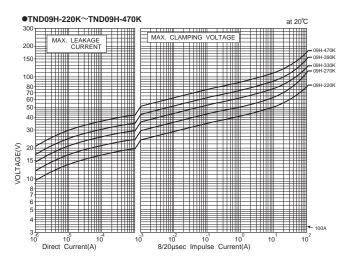

					Otorage it	imperata	ic italigo	:30 to +130 C
	Previous	Max. Allowa	able Voltage	Maximum applicable voltage for a short period	Max.	Max. Clamping Va		Varistor Voltage
Part Number	Part Number (Just for your reference)	Conti	nuous	5 minutes	Energy	I	Voltage V1mA	
		AC (Vrms)	DC (V)	DC (V)	20ms(J)	(A)	(V)	(V)
TND09H-220KB00AAA0	TNR9H220K	12	16	24			43	22 (20~24)
TND09H-270KB00AAA0	TNR9H270K	15	19	29			53	27 (24~30)
TND09H-330KB00AAA0	TNR9H330K	18	24	36	5	2	65	33 (30~36)
TND09H-390KB00AAA0	TNR9H390K	22	28	42			77	39 (35~43)
TND09H-470KB00AAA0	TNR9H470K	26	34	50			93	47 (42~52)
TND12H-220KB00AAA0	TNR12H220K	12	16	24			43	22 (20~24)
TND12H-270KB00AAA0	TNR12H270K	15	19	29			53	27 (24~30)
TND12H-330KB00AAA0	TNR12H330K	18	24	36	10	5	65	33 (30~36)
TND12H-390KB00AAA0	TNR12H390K	22	28	42			77	39 (35~43)
TND12H-470KB00AAA0	TNR12H470K	26	34	50			93	47 (42~52)
TND15H-220KB00AAA0	TNR15H220K	12	16	24			43	22 (20~24)
TND15H-270KB00AAA0	TNR15H270K	15	19	29			53	27 (24~30)
TND15H-330KB00AAA0	TNR15H330K	18	24	36	20	10	65	33 (30~36)
TND15H-390KB00AAA0	TNR15H390K	22	28	42			77	39 (35~43)
TND15H-470KB00AAA0	TNR15H470K	26	34	50			93	47 (42~52)
TND23H-220KB00AAA0	TNR23H220K	12	16	24			43	22 (20~24)
TND23H-270KB00AAA0	TNR23H270K	15	19	29			53	27 (24~30)
TND23H-330KB00AAA0	TNR23H330K	18	24	36	40	25	65	33 (30~36)
TND23H-390KB00AAA0	TNR23H390K	22	28	42			77	39 (35~43)
TND23H-470KB00AAA0	TNR23H470K	26	34	50			93	47 (42~52)

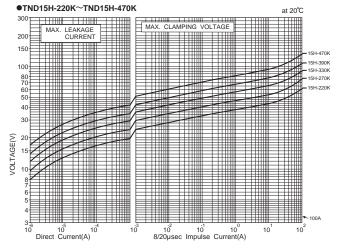
♦DIMENSIONS [mm]

Туре	D Max.	H Max.	T Max.	W ±1.0	L Min.	φd ±0.05
9H	10.0	13.0	5.0	5.0	25.0	0.6
12H	13.5	16.5	5.0	7.5	25.0	0.8
15H	16.5	19.0	5.0	7.5	25.0	0.8
23H	24.0	27.0	5.0	10.0	25.0	0.8


◆MARKING






H Series

♦V-I CURVE

♦GENERAL SPECIFICATIONS

Operating Temperature Range: -40 to +125°C Storage Temperature Range: -50 to +150°C

Item	Test Conditions	Specifications
Standard Test	20±15℃, 85%RH Max.	
Condition		
Varistor Voltage	The voltage between the two terminals measured at 1mA DC is called Varistor Voltage.	Satisfy the specification.
	The measurement shall be made as fast as possible to avoid heat affection.	
Maximum Allowable	Maximum continuous sinusoidal RMS voltage or	Refer to Ratings.
Voltage	Maximum continuous DC voltage which may be applied.	
Maximum applicable	Maximum DC voltage to be applied for only 5 minutes.	Refer to Ratings.
voltage for a short		
period (5 minutes)		
Maximum Clamping	The maximum voltage between the terminals, measured standard impulse current (8/20 µs).	Satisfy the specification.
Voltage		
Maximum Energy	Maximum energy within the $\pm 10\%$ varistor voltage change when 1 impulse 20 ms long is	Satisfy the specification.
	applied.	
Temperature	$\frac{\text{V1mA at }85^{\circ}\text{C} - \text{V1mA at }25^{\circ}\text{C}}{\text{V1mA at }25^{\circ}\text{C}} \times \frac{1}{60} \times 100 \text{ (%/°C)}$	Within
Coefficient	V1mA at 25℃	±0.05 % / °C

♦MECHANICAL CHARACTERISTICS

Item		Test Co	onditions		Specifications
Terminal Pull	After gradually ap	plying the force keeping the	unit fixed for 10±1 s	sec. in axial direction, the	ΔV1mA/V1mA≦±5%
Strength	damage of the terr	ninals shall be visually examin	ed.		No remarkable damage
	Lead diar	neter Force			
	Φ0.6mm. ¢	0.8mm 10 N			
Terminal Bending	The unit shall be	secured with its terminal kep	ot vertical and the w	veight specified below be	No remarkable damage
Strength	applied in the axia				
	The terminal shall	gradually be bend by 90° in o	ne direction then 90°	in the opposite direction,	
	and again back to	original position.			
	The damage of the	terminal shall be visually exa	mined.		
	Lead diar	neter Force			
	Φ0.6mm. ¢	0.8mm 5 N			
Vibration	After repeatedly a	oplying a single harmonic vibr	ation (amplitude: 0.7	75mm) double amplitude :	ΔV1mA / V1mA ≦±5%
	1.5mm with 1 m	inute vibration frequency c	/cle (10Hz →500Hz	z →10Hz) to each three	No remarkable damage
	perpendicular dire	ctions for 2 hours. Total 6 hour	s. The devices shall	be visually examined.	
Resistance to	Each lead shall be	e dipped into a solder bath ha	ving a temperature o	of 350±10℃ to a point 2.0	ΔV1mA / V1mA ≦±5%
Soldering Heat	to 2.5 mm from th	d then be stored at room	No remarkable damage		
	temperature for 1	shall be examined.			
	or				
	Each lead shall be	e dipped into a solder bath ha	ving a temperature o	of 260±10℃ to a point 2.0	
	to 2.5 mm from th	d then be stored at room			
	temperature for 1	shall be examined.			
Solderability	Each lead shall be	osin for 5 to 10 sec.	At least, 95% of the leads		
	Then each lead sh	shall be covered with			
	Solder	Pb free (Sn-3.0Ag-0.5Cu)	Eutectic (Sn/Pb)		solder uniformly.
	Solder Temp.	245±5℃	235±5℃		
	Dipping Time	2±0.5sec).		
	Dipping Depth	1.5 to 2.0mm (fron	the body)		

◆ENVIRONMENTAL CHARACTERISTICS

Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected 150±2℃ for 1000±12 hours without load.	ΔV1mA/V1mA≦±10%
Low Temperature Storage	The specimen shall be subjected -40±2℃ for 1000±12 hours without load.	ΔV1mA/V1mA≦±5%
Damp heat (Humidity)	The specimen shall be subjected to 60±2℃, 90 to 95%RH for 1000±12 hours without load.	ΔV1mA/V1mA≦±10%
Temperature Cycle	The temperature cycle shown below shall be repeated 50 cycles40±3°C, 30 minutes ⇔ +150±2°C, 30 minutes	ΔV1mA/V1mA≦±10% No remarkable damage
High Temperature Operating	The specimen shall be subjected to 125±2℃ with the maximum allowable voltage for 1000±12 hours.	ΔV1mA/V1mA≦±20%
Damp heat Operating	The specimen shall be subjected to 60±2°C, 90 to 95%RH with the maximum allowable voltage for 1000±12 hours.	ΔV1mA/V1mA≦±10%

Varistor voltage change of forward direction shall be measured in the test of unipolar surge life and DC load life.

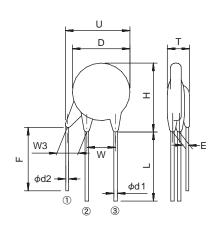
Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

Note: For 42V battery line, please contact our sales office.

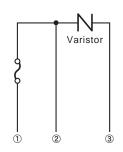
GF Series

GF Series are combined Varistor with Thermal Fuse

●Coating resin : UL94V-0

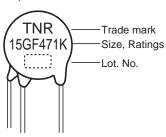


Operating Temperature Range: -40 to +85℃ Storage Temperature Range: -50 to +125℃

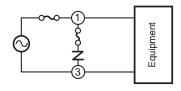

STANDARD RATINGS

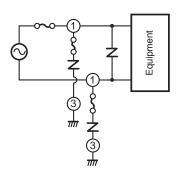
		Previous			Maximum Rat	ings		Max.	Capacitance Typical @1kHz	Varistor	T	E ±1.0
	Part Number	Part Number (Just for your reference)	Max. Allo Volta		Max. Peak Current	Max. Energy	Rated Wattage	Clamping Voltage		Voltage V1mA		
15	GF Type		AC(Vrms)	DC(V)	8/20µs(A)	2ms(J)	(W)	V50A (V)	(pF)	(V)	(mm)	(mm)
TN	ID15GF271KB00EAA0	TNR15GF271K-E	175	225		50	0.6	440	680	270 (243~297)	9	1.5
TN	ID15GF471KB00EAA0	TNR15GF471K-E	300	385	2500A/2 times	80	0.6	765	450	470 (423~517)	10	2.2
ΤN	ID15GF821KB00EAA0	TNR15GF821K-E	510	670		110	0.6	1340	280	820 (738~902)	12	3.5
23	GF Type		AC (Vrms)	DC (V)	8/20µs(A)	2ms(J)	(W)	V100A (V)	(pF)	(V)	(mm)	(mm)
TN	ID23GF271KB00EAA0	TNR23GF271K-E	175	225		90	0.8	440	1850	270 (243~297)	9	1.5
TN	ID23GF471KB00EAA0	TNR23GF471K-E	300	385	4000A/2 times	150	1.0	765	1200	470 (423~517)	10	2.3
TN	ID23GF821KB00EAA0	TNR23GF821K-E	510	670		190	1.5	1340	800	820 (738~902)	12	3.6

♦DIMENSIONS [mm]

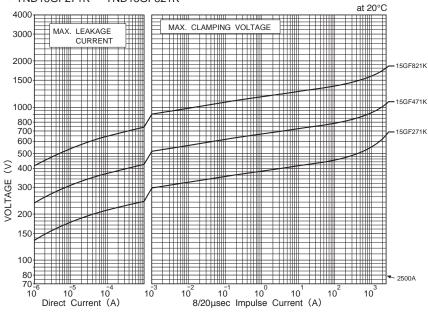

	15GF	23GF	
D	18 Max.	25 Max.	
Т	Refer to Star	dard Ratings	
Н	22 Max.	32 Max.	
W	7.5±1	10±1	
W3	2.5 Min.	2.5 Min.	
L	25 Min.	25 Min.	
U	23 Max.	28 Max.	
F	17 Min.	17 Min.	
E	Refer to Star	dard Ratings	
φd1	0.8±0.05	0.8±0.05	
φd2	0.53±0.05	0.58±0.05	

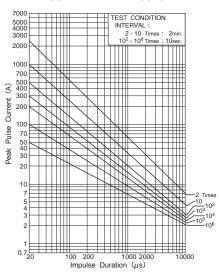
Туре	Thermal fuse ratings
15GF	145℃-250V-1A
23GF	145℃-250V-3A


♦MARKING

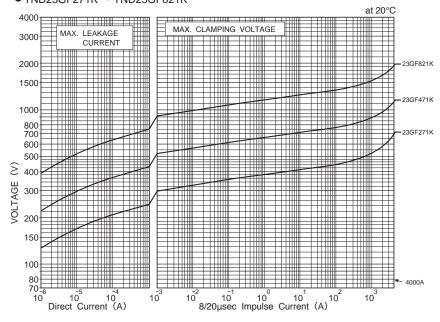

EX)

GF Series

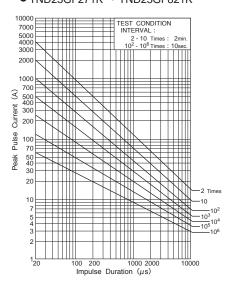

◆APPLICATION CIRCUIT EXAMPLE


♦V-I CURVE

■ TND15GF271K ~ TND15GF821K



♦PULSE LIFE TIME RAITINGS


■ TND15GF271K ~ TND15GF821K

● TND23GF271K ~ TND23GF821K

● TND23GF271K ~ TND23GF821K

GF Series

♦GENERAL SPECIFICATIONS

Item	Test Conditions	Specifications	
Standard Test Condition	20±15℃,85%RH Max.		
Varistor Voltage	The V1 mA voltage between the two leads at 1 mA DC is quickly measured.		
Maximum Allowable Voltage	The maximum DC voltage to be continuously applied, and the maximum sinusoidal AC voltage effective value.		
Maximum Peak Surge Current	The maximum current value if the change rate is $\pm 10\%$ of the varistor voltage against an initial value when the standard impulse current at 8/20 μ s is applied in one direction twice within a five-minute interval.	Oction the constitution	
Energy Rating	The maximum energy if the change rate is $\pm 10\%$ of the varistor voltage against an initial value when a 2 ms square wave is applied once.	Satisfy the specification.	
Rated Wattage	The maximum electric power if the change rate of the varistor voltage is ±10% when commercial frequency AC power is applied in 85±2℃ for 1000±12 hours.		
Maximum Clamping Voltage	The maximum voltage between the terminals, measured standard impulse current (8/20 μs).		
Temperature Coefficient			
Insulation	Short circuit the two leads of the varistor, and put the varistor body into metal balls (approximately 1 mm diameter) leaving approximately 2 mm between the leads and the balls. Then, apply AC2000 Vrms between the leads and the metal balls for 60±5 seconds.	No abnormalities caused by insulation breakdown, etc.	
Capacitance	The capacitance measured by 1kHz, 1 Vrms sinusoidal wave.	For reference only	

Note: In DC load or unipolar surge tests, apply varistor voltage in the test voltage forward direction to measure and evaluate. Varistor voltage change is measured after stored at Standard Test Conditions for 1 to 2 hours.

◆MECHANICAL CHARACTERISTICS

Item			Test Cor	nditions			Specifications
	Fix the unit, and graduate seconds.(Conform to J						
Terminal Pull	Туре	Lead Diameter	Ford	е			No abnormality such as
Strength	15GF, 23GF	0.8mm	10N				disconnection.
	Thermal fuse (15GF)	0.53mm	5N				
	Thermal fuse (23GF)	0.58mm	10N				
	The unit shall be secured with its terminal kept vertical and the weight specified below be applied in the axial direction. The terminal shall gradually be bent by 90° in one direction then 90° in the opposite direction, and again back to the original position. (Conform to JIS C 5035)						The leads shall not disconnect.
Terminal Bending	Туре	Lead Diameter	Ford	e			slacken, or peel off after bending twice.
Strength	15GF, 23GF	0.8mm	5N				
	Thermal fuse (15GF)	0.53mm	2.5N				
	Thermal fuse (23GF)	0.58mm	5N				
Vibration	Mount varistor body on Peak-to-Peak amplitud Vibration frequency r Sweeping time: Appr Direction and duratio	e: 1.5mm, Accelerange: 10 to 500h coximately 20 min	eration : 50 Hz utes for 10	6 Hz → 500)Hz → 10l		No remarkable apperance abnormality.
	Each lead shall be dipp Then each lead shall b			(about 25	i%) of ros	in for 5 to 10 sec.	
0.11122	Solder	Pb free (Sn-3.0/	Ag-0.5Cu)	Eutectic	(Sn/Pb)		At least, 95% of the leads
Solderability	Solder Temp.	245±5℃		235±5℃	;		shall be covered with solder uniformly.
	Dipping Time	2±0.5sec.					dimenny.
	Dipping Depth	1.5 to 2.0mm (fro	om the boo	ly)			
Resistance to Soldering Heat	Each lead shall be dipped into a solder bath having a temperature of 350±10°C to a point 2.0 to 2.5 mm from the body of the unit, be held there for 3 sec and then be stored at room temperature for 1 to 2 hours. The ∆V1mA and mechanical damage shall be examined. (Conform to JIS C 5102)						ΔV1mA / V1mA ≦ ±5% No remarkable damage

◆ENVIRONMENTAL CHAR AC TERISTICS

Item	Test Conditions	Specifications
High Temperature Storage (Dry heat)	The specimen shall be subjected 125±2°C for 1000±12 hours without load.	$\Delta V1mA/V1mA \le \pm 5\%$
Damp heat (Humidity)		
Temperature Cycle	The temperature cycle shown below shall be repeated 50 cycles. $-40\pm3^{\circ}\text{C}$, 30 minutes \Leftrightarrow +150 $\pm2^{\circ}\text{C}$, 30 minutes	ΔV1mA/V1mA ≤ ±5% No remarkable damage No thermal fuse disconnection.
Damp heat Operating	The specimen shall be subjected to $40\pm2^\circ\!\!C$, 90 to 95%RH with the maximum allowable voltage for 1000±12 hours.	ΔV1mA/V1mA ≦ ±10%
High Temperature Operating	The specimen shall be subjected to 85±2℃ with the maximum allowable voltage for 1000±12 hours.	Δ V1mA/V1mA \leq ±10% No thermal fuse disconnection.

Metal Oxide Varistors TNRTM **Technical Note, Application Examples**

1. WHAT IS A VARISTOR?

A varistor has the volt-ampere characteristics in which current suddenly starts to flow through the device at a certain voltage, as shown in Figure 1.

The varistors are used to protect semiconductor devices in electronic and electric circuits from overvoltage. As shown in Figure 2, a varistor is inserted in parallel with a circuit to be protected. When an impulse is applied to the circuit, pulse current ls, which is determined by pulse voltage Vs and pulse impedance Zs, flows to limit the pulse voltage to the varistor limit voltage Vclamp.

The relation can be expressed by the equations as follows:

$$Vs = Is \times Zs + Vclamp$$

$$Vclamp = Vs - Is \times Zs$$

The pulse current Is is easily obtained by the following equation because of Vs >> Vclamp.

$$Is = \frac{Vs}{7s}$$

(3)

Thus, the circuit can be protected from being damaged by pulse voltages as long as it has withstand voltage larger than the maximum limit voltage.

Owing to the characteristic, the varistors are extremely effective as protecting devices of electronic and electric equipment by absorption of abnormal voltages and lightening pulses.

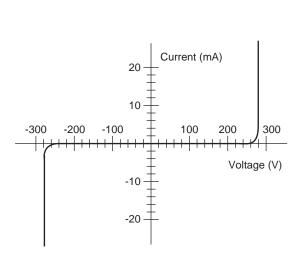
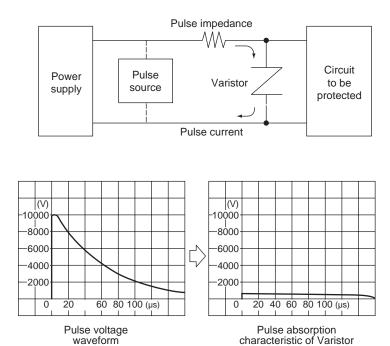
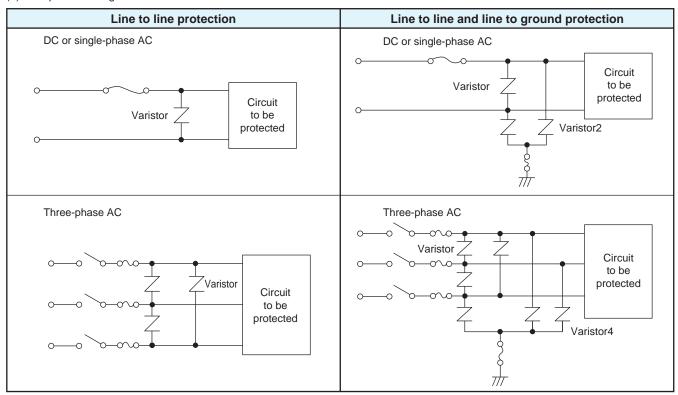


Fig. 1 Volt-ampere characteristics of varistor




Fig. 2 Pulse absorption by varistor

2. SAMPLE USED AND NOTES ON Varistor

This chapter describes general sample uses and notes on use of Varistors. Take these conditions into consideration when you select Varistors of appropriate ratings.

2-1 PROTECTION FROM POWER PULSE

(1)Examples of wiring

(2) Examples of rating selections

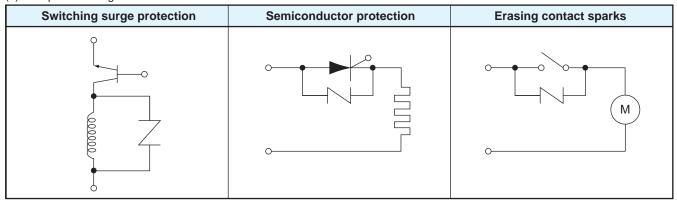
Power Voltage	Type
	TND□□V-221K
AC100V	TND□□V-241K
	TND□□V-271K*
	TND□□V-391K
AC200V	TND□□V-431K
	TND□□V-471K*
DC12V	TND□□V-220K
DC12V	TND□□V-270K
	TND□□V-330K
DC24V	TND□□V-390K
	TND□□V-470K

Notes:

- 1)If a Varistor is used at power voltage other than the examples above, never make the power voltage increase over the maximum allowable voltage.
- 2)For individual wiring or capacitive load, the power voltage is temporarily increased by resonance at switch on or off. Thus, use a Varistor of the type with mark * for the power of 100 VAC or 200 VAC.

Varistor used for line to ground

Varistor	Power Voltage	Туре
Varistor2	AC100V AC200V	TND□□V-431K TND□□V-471K TND□□V-911K≦** TND□□V-182K ***
Varistor4	AC200V	TND□□V-431K TND□□V-471K TND□□V-911K≦** TND□□V-182K ***

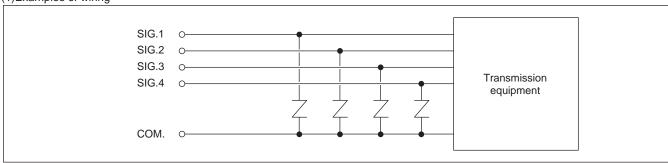

Notes:

- 1)In an insulation resistance test (500V mega test) of a unit, it may incorrectly judged to be bad due to its leak current from the Varistor mounted on the unit. Test the unit with the Varistor removed after obtaining approval of the unit user on removing the Varistor. Or use a Varistor with mark ** for the test unit.
- 2)In a withstand voltage test (1000 VAC test) of a unit, it may incorrectly judged to be bad due to its leakage current from the Varistor mounted on the unit. Test the unit with the Varistor removed after obtaining approval of the unit user on removing the Varistor. Or use a Varistor with mark *** for the test unit.
- 3)Use a Varistor of 200 VAC type between the 100 VAC power line to ground to prevent the power supply from being damaged by overvoltage such as ground-fault.

2-2 PROTECTION OF SEMICONDUCTORS AND ICs FROM INDUCTIVE ON/OFF PULSES AND ERASE OF CONTACT SPARKS

(1) Examples of wiring

(2) Examples of rating selections


	Examples of general selections								
Power Voltage	Type	Notes:							
DC 12V	TND□□V-220K	1)If a Varistor is used at power voltage other than the examples to the left, never							
DC 24V	TND□□V-390K	make the power voltage increase over the maximum allowable voltage.							
DC100V	TND□□V-151K	2)For other than a complete DC voltage, never make the maximum peak							
	TND□□V-221K	voltage increase over the maximum allowable voltage. 3)Take the pulse energy generated in load into account sufficiently to de							
AC100V	TND□□V-241K	the maximum peak current, maximum energy, and rated wattage.							
	TND□□V-271K	The maximum pour out on, maximum energy, and rated waitage.							

(3)Notes on use of Varistor

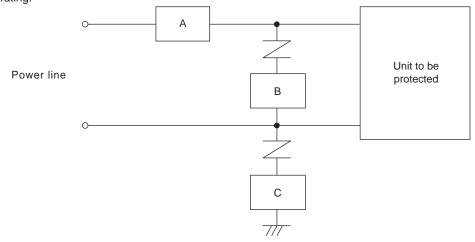
- 1. Be careful of the notes described in Section 2-1 @PROTECTION FROM POWER PULSE.@
- 2. Select a proper Varistor satisfying the desired relationship between the number of pulse applications and the Varistor rating, referring to the reduction curve of pulse life time ratings.
- 3. Select a Varistor having rated wattage larger than averaged pulse wattage to make the Varistor absorb high-frequent pulses.

2-3 REDUCING PULSES ON SIGNAL TRANSMISSION LINES

(1)Examples of wiring

(2) Examples of rating selections

Examples of general selections								
Signal Carrier Voltage	Type	Notes:						
DC 12V max.	TND□□V-150K TND□□V-220K TND□□V-820K≦	 1)Any Varistor includes electrostatic capacitor listed in the rating table. Take special note when a Varistor is applied to high-frequency signal. 2)When signal of higher voltage than that of normal signals (such as bell signal) is superimposed on normal signals, select an appropriate Varistor 						
DC 24V	TND□□V-390K TND□□V-820K≦	available for the higher voltage. 3)Use a Varistor with a type of varistor voltage 82V or higher if signal is too low to be attenuated.						


2-4 Examples of selections in fields

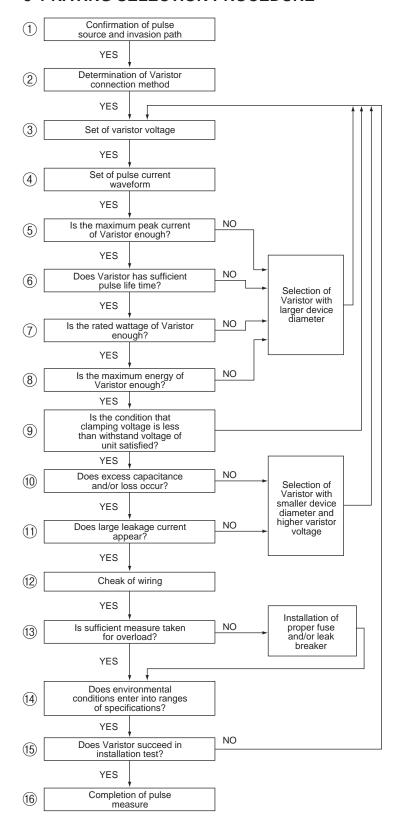
	Example of general selections							
Use	Location	Type	Notes					
Commercial	Indoor	TND05V-□□□K TND07V-□□□K TND10V-□□□K TND12V-□□□K	1)Each number in the range between 5 to 20 specifies the diameter of a Varistor. The larger the diameter is the greater the maximum peak current of the Varistor is. Select a Varistor of the type covering the expected peak current.					
Commercial	Outdoor	TND07V-□□□K TND10V-□□□K TND12V-□□□K TND14V-□□□K	2)Pay sufficient attention to the conditions peculiar to the unit of which the selected Varistor is mounted as well as normal selection examples.					
Communication, Measurement,	Indoor	TND07V-□□□K TND10V-□□□K TND12V-□□□K TND14V-□□□K						
Control	Outdoor	TND07V-□□□K TND10V-□□□K TND12V-□□□K TND14V-□□□K						
Industry, Power	Indoor or outdoor	TND14V-□□□K TND20V-□□□K						

2-5 Notes on use

Take the notes for reduction of power pulses into account as well as those explained below.

1. Take the action shown in the figure below because the Varistor may be short-circuited or broken when it absorbs a pulse exceeding its rating.

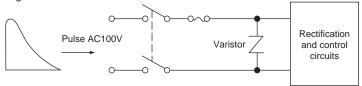
- 1)Mount the Varistor closer to the circuit than the overcurrent protector such as a breaker or fuse to disconnect the Varistor from the power supply immediately at short circuit of the Varistor.
- 2)Mount the overcurrent protector at location B if it cannot be mounted at location A.
- 3)Selection examples of ratings of fuses mounted at location A or B are listed below:


Type (TND-)	05V-□□□K	07V-□□□K	09V-□□□K 10V-□□□K 12V-□□□K	14V-□□□K 20V-□□□K
Fuse rating	3A max.	5A max.	7A max.	10A max.

- 4)Use a leak breaker or at position A or mount a temperature fuse connected thermally to the Varistor at position C if the Varistor inserted between the power line and the earth is grounded to the unit earth. It is also effective to use a Varistor of the GF series which includes a thermal fuse.
- 2. Check that the Varistor is used within the range of the rating operating temperature if it is exposed to direct sunlight or placed near a heating unit.
- 3. Make wiring of the Varistor as short as possible. With long wiring, large voltage drop occurring at a rapid rising pulse on the L component of the wiring causes the Varistor not to be effective enough for surge absorption.

3. SELECTION OF Varistor RATING

3-1 RATING SELECTION PROCEDURE


- ①Make clear pulse sources and invasion paths including outer lightening, inner lightening (on/off lightening), line to line portion, line to ground portion, power line, and signal line.
- ②See the Sample uses and notes on Varistor described earlier for the connections of Varistors.
- ③Set the varistor voltage so that the circuit voltage may not exceed the maximum allowable voltage. Take fully care of the applied voltage in insulating resistance or withstand voltage test if the Varistor is inserted between a line to ground.
- The peak pulse current is almost equal to the value obtained by dividing the expected pulse voltage by the pulse impedance.
- Select a Varistor with device diameter for the maximum peak current larger than the peak pulse current if the expected number of pulses are not more than 2.
- ⑥if many impulses are expected, select a Varistor with device diameter for pulse life time longer than the requested life time, referring to the figure of pulse life time ratings.
- Select a Varistor with device diameter for rated wattages larger than the averaged pulse wattage if pulses are applied continuously to the Varistor at a high rate.
- ®Take care of the maximum energy as well if impulses are expected to have high energy.
- Select the varistor voltage and diameter of Varistor so that the withstand voltage of the unit to be protected exceeds the maximum clamping voltage. If no Varistor can satisfy the requested characteristics, it may be necessary to make the withstand voltage of the unit higher.
- ®Contact us when you use a high frequency circuit. The capacitance of the Varistor may attenuate high frequency signals and the Varistor may be heated by the loss.
- ①See the maximum leakage current known from the volt-ampere characteristic curve.
- Make wiring as short as possible. With long wiring, large voltage drop occurring at a rapid rising pulse on the L component of the wiring and its magnetic joint with other wiring cause the Varistor not to be effective enough for surge absorption.
- (3) Connect a fuse before the Varistor. See 2-5 for selection of a fuse.
- (4) Take note that the temperature around the Varistor does not become larger than the maximum operating temperature.
- (§) Perform installation test as much as possible to confirm the performance of the Varistor.
- (6) The action for absorbing pulses by Varistor is now completed.

3-2 EXAMPLES OF Varistor SELECTION

3-2-1 ACTION FOR EXTERNAL LIGHTENING PULSES OF POWER SUPPLY OF CONTROL UNIT

(1)Target circuit

Conditions

- 1)Withstand voltage Vt: 600V
- 2)Pulse impedance Zs: 50ohm
- 3)Pulse voltage Vs: 12kV at duty cycle of 1.2/50µsec
- 4) Number of pulses: 100 = 10 times × 10 years
- 5)Pulse interval: 2 minutes or more

(2) Selection of Varistor based on rating selection procedure

- 1. Confirmation of pulse source and invasion path: Circuit between external lightening pulse and power line. (The unit is not grounded.)
- 2. Determination of Varistor connection method: Between power lines. (AC power input side of unit to be protected.)
- 3. Set of varistor voltage

Select the Varistor of 270V type based on the above sample use, because it is inserted between the 100 VAC power lines. Select a proper type of a Varistor if the relationship between the withstand and clamping voltages of the unit to be protected does not satisfy the condition described in item 9.

4. Set of pulse current waveform

a)Pulse current peak value (Ip)

$$Ip = \frac{Vs}{Zs} = \frac{12,000}{50} = 240[A]$$

b)Duration of wave tail of pulse current

The duration of wave tail of pulse current can be shorter than that of pulse voltage. However, set the duration of wave tail of pulse current T to 40µs for safety. (In actual, it is about 25µs if the pulse voltage wave has the duty cycle of 1.2/50µs.

5. Is the maximum peak current of Varistor enough?

Because the maximum peak current is 240A, it is often considered that a Varistor of 5V type with the maximum peak current of 250A (secured for two pulses) can be available. However, the duration of wave tail of pulse current is not 20µs for a total of 100 pulses. Thus it is necessary to check the pulse life time of the Varistor.

6. Does Varistor have sufficient pulse life time?

The conditions include Ip = 240A, T = $40\mu A$, total number of pulses = 100, and pulse interval = 2 minutes or more. Collate these four conditions with the pulse life ratings of the Varistor. (Refer to the manual of CAT. No. 1006 for the pulse life time ratings.)

Varistor Type	Number of pulses
5V	2 to 10
7V	10 to 100
10V	100 to 1000
14V	1000 to 10000

Depending on the above specification, a Varistor of the 10V type can be selected. Thus the Varistor of type TND10V-271K is determined as a candidate from the results above together with the result described in Item 3.

7. Is rated wattage of Varistor enough?

The rated wattage of the Varistor should not particularly be taken into account because the pulses are supplied to the unit at a low frequency.

8. Is the maximum energy of Varistor enough?

The maximum energy of the Varistor should not be taken into account because lightening pulses of short duration of wave tail is only applied to the unit.

9. Is the condition that clamping voltage is less than withstand voltage of unit satisfied?

The maximum clamping voltage of TND10V-271K is defined as $V_{25A} = 455V_{max}$ in the rating table. However, since the maximum current flowing through the circuit is 240A, the voltage at 240A should be read from the Varistor volt-ampere characteristics to compare it with the unit withstand voltage of 600V. The relationship is satisfied as follows: $V_{240A} = 510V < 600V$ (See the manual CAT. NO. 1006 for the Varistor volt-ampere characteristics.)

10. Does excess capacitance and/or loss occur?

As the power line of commercial frequency 50 to 60 Hz is low frequency, it does not cause severe problems.

11. Does large leakage current appear?

As the 100 VAC power line produces only a small leakage current of several µA, it does not cause severe problems.

12. Check of wiring

Note that the wiring to the Varistor is not be electrostatically and magnetically coupled with the rectification circuit and control circuit lines. Make the wiring as short as possible to minimize the stray inductance.

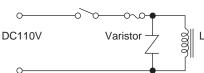
13. Is sufficient measure taken for overload?

Attach a fuse of about 5A before the Varistor for occurrence of overvoltage. (See 2-5.)

14. Do environmental conditions enter into ranges of specifications?

Check operating temperature range of the unit unless it is used near heaters such as coils.

15. Does Varistor succeed in installation test?


Perform the test with TND10V-271K connected to confirm the performance of the unit.

16. Completion of pulse measure

After insertion of TND10V-271K to the unit as shown in the figure, the action required for absorbing pulses is now completed.

3-2-2 ACTION FOR ON-OFF PULSE FROM RELAY

(1)Target circuit

Conditions

1)Coil rating: I = 0.25 A, L = 1H

2)Relay operation: 2 times per sec, 8 hours per day, and 6 days per week

3)Life: 5 years

4) Number of pulses: $2 \times 3600 \times 8 \times 313 \times 5 = 0.9 \times 10^{8}$

5) Desired suppress voltage: up to 250 V

(2) Selection of Varistor based on rating selection procedure

- 1. Confirmation of pulse source and invasion path: Wiring between on/off relay line and power line.
- 2. Determination of Varistor connection method: Between power line (in parallel with coil).
- 3. Set of varistor voltage

A Varistor will be inserted between the 110 VDC power lines. Because the application is not defined as a typical example, the varistor voltage must be determined from the relationship between the circuit voltage and the maximum allowable voltage. Select the Varistor of type 151K (150V) with the maximum allowable voltage of 121V or more, assuming voltage fluctuation of + 10%.

- 4. Set of pulse current waveform
 - a)Pulse peak current (Ip): 0.25A same as load current.
 - b)Duration of wave tail of pulse current

The duration of wave tail of pulse current can be calculated from the following equation assuming the pulse current wave to be a square wave.

$$E = 1/2L Ip^2 = 0.5 \times 1 \times 0.25 \times 0.25 = 0.031[J]$$

$$T = \frac{E}{Ip \cdot Vp} = \frac{0.031 \times 1000}{0.25 \times 220} = 0.56[ms]$$

where Vp: estimated clamping voltage of Varistor of type 151K at 0.25A read from the Varistor volt-ampere characteristics.

- 5. Is the maximum peak current of Varistor enough?
 - Check the pulse life time of the Varistor because pulses occur at a high frequency.
- 6. Does Varistor have sufficient pulse life time?

The conditions include Ip = 0.25A, T = 0.56msec, number of applied pulses = $0.9 \times 10^{\circ}$, and applied pulse interval = 0.5 sec. Since the applied pulse interval is shorter than the specification of 10 sec, the equivalent current and the equivalent number of applied pulses should be found with the equivalent interval set to 10 sec.

Equivalent current =
$$0.25 \times \frac{10}{0.5} = 5[A]$$

Equivalent number of applied pulses =
$$0.9 \times 10^8 \times \frac{0.5}{10} = 4.5 \times 10^6$$

In addition, the duration of wave tail of the pulse current T is 0.56msec = 560µsec as known from the result of Item 4. Collate these conditions with the pulse life time rating of the Varistor.

Varistor type	Number of pulses
7V	10 ⁵ to 10 ⁶ < 4.5 × 10 ⁶
10V	> 4.5 × 10 ⁶

Depending on the above specification, a Varistor of the 10V type can be selected. Thus, the Varistor of type TND10V-151K is determined as a candidate from the results above together with the result described in Item 3.

7. Is rated wattage of Varistor enough?

The averaged wattage Ps[W] absorbed by the

Varistor is,
$$Ps = E fs = 0.031 \times 2 = 0.062[W]$$

where fs is the repeated pulse frequency [times per sec]. From the viewpoint of the absorbing wattage, a Varistor of 5V type (0.1W) may be available. However, a Varistor of 10V type (0.4W) is better if the pulse life time ratings of the Varistor in Item 6 is also taken into account.

8. Is the maximum energy of Varistor enough?

This is already considered in the pulse life time because many pulses are applied to the Varistor (see Item 6).

9. Is the condition that clamping voltage is less than withstand voltage of unit satisfied?

The maximum clamping voltage of TND10V-151K was assumed to be about 220V in Item 4. By checking it with the Varistor volt-ampere characteristics, we find $V_{0.25A} = 210V < 250V$. Thus this requested characteristic is satisfied.

10. Does excess capacitance and/or loss occur?

As the DC power line does not cause severe problems.

11. Does large leakage current appear?

As the 110 VDC power line produces only a small leakage current of several µA, it does not cause severe problems.

12. Check of wiring

Insert the Varistor near the coil as much as possible to reduce induction to other components.

13. Is sufficient measure taken for overload?

Attach a fuse of 3A to 5A before the Varistor for occurrence of overvoltage.

14. Do. environmental conditions enter into ranges of specifications?

Check operating temperature range of the unit and temperature near the coils.

15. Does Varistor succeed in installation test?

Perform the test with TND10V-151K connected to confirm the performance of the unit.

16. Completion of pulse measure

After insertion of TND10V-151K to the unit as shown in the figure, the action required for absorbing pulses is now completed.

4. LOAD REDUCTION CURVE OF Varistor FOR TEMPERATURE

Fig. 3 Load reduction curve

The load includes the rated wattage, maximum allowable voltage, maximum peak current (SV series: Values of 2 times), maximum energy. For example, when TND10V-221K is used at 950, the load is found to be 75% from the load reduction curve above. Thus, the parameters can be calculated as follows.

1. Rated wattages	$0.4W \times 0.75 = 0.3W$	
2. Maximum allowable voltage	AC: 140V × 0.75 = 105V DC: 180V × 0.75 = 135V	
3. Maximum peak current	2500A × 0.75 = 1875A	
4. Maximum energy	27.5J × 0.75 = 20.63J	

5. DETERIORATION OF Varistor

5-1 DETERIORATION OF Varistor

(1)In case where no pulses are applied to Varistor

As known from the relationship between mean life of Varistor and ambient temperature shown in the figure below, a Varistor can have the mean life of longer than 100 years if it is used at ambient temperature and circuit voltage within their maximum ratings. Accordingly it can be said that the Varistor has hardly been deteriorated.

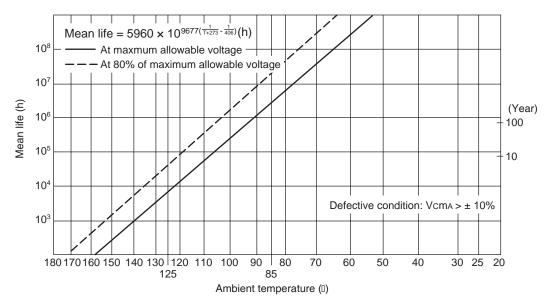
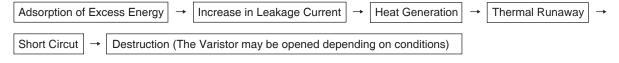


Fig. 4 Relationship between mean life Varistor and ambient temperature

(2)In case where pulses are applied to Varistor


Being a pulse absorption component, the Varistor is deteriorated if it is subject to pulses exceeding its rating.

- 1. With lightening pulses applied to a Varistor, the waveform, energy, and frequency cannot be defined. Thus the period taken until the Varistor is deteriorated cannot also be determined.
- 2. With on/off pulses applied to a Varistor, the waveform, energy, and frequency can be measured or estimated. Thus the period taken until the Varistor can almost be estimated from the pulse life time ratings.
 - However, because a Varistor with the rating suited to the requested pulse life time ratings is normally selected, the Varistor will hardly be deteriorated within the life of equipment including the Varistor.

5-2 HOW TO CHECK DETERIORATION OF Varistor AND FREQUENCY OF THE CHECKING

(1)Deterioration of Varistor

The Varistor is deteriorated by overvoltage application caused by overpulses and fluctuation of power voltage.

(2)How to check deterioration of Varistor

As described in (1) of Section 5-2, the deterioration of a Varistor is known by increase in leakage current. Accordingly, how a Varistor is deteriorated can be measured by the leakage current.

The initial value of the leakage current of a Varistor (or leakage current occurring when the DC voltage half of the nominal varistor voltage is applied to the Varistor) is about 1μ A though the value varies depending on the rating of the Varistor. The leakage current of 10μ A is a sign that deterioration begins in the Varistor, so the Varistor should be replaced with a new one.

However, the leakage current of 10µA causes the Varistor to generate only the minimum heat, which will not lead the thermal runaway immediately. The Varistor has a shorter pulse life than that in the initial state.

6. PULSE PESPONSE CHARACTERISTICS OF Varistor

The Varistor itself has a response time for a pulse as extremely short as 1 nsec. However, it is difficult to measure the time because of a large influence of the inductance of lead wire.

In actual use, the clamping voltage is increased a little with a fast rising pulse even at the same current because of influence of the inductance of lead wire. Figure 5 shows the ratio of clamping voltages at faster pulse rise times to the clamping voltage at application of standard pulse current waveform of 8/20µs, which is called overshoot ratio. The figure is an example when pulse current having rising time of 0.5µs to 8µs and constant peak current of 10A are applied to TND14V-271K. In the figure, the overshoot of about 10% appears at the rising time of 0.5µs.

In actual use of Varistor, the rising of pulse voltage is limited by inductance and capacitance on the way to transmit in line. The rise time is almost not less than 1µs.

The wiring should be as short as possible because longer wiring make the overshoot higher.

Figures 6 and 7 show pulse absorption characteristics of a Varistor with the wiring lengths of 5mm and 25cm respectively, as extreme examples. In these examples, the clamping voltage with wiring length of 25cm is about 1250V, which is about two times and a half of the clamping voltage of about 500V with wiring length of 5mm.

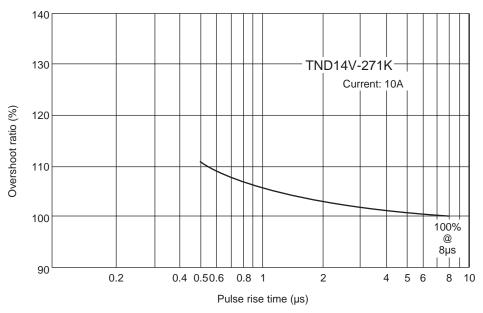
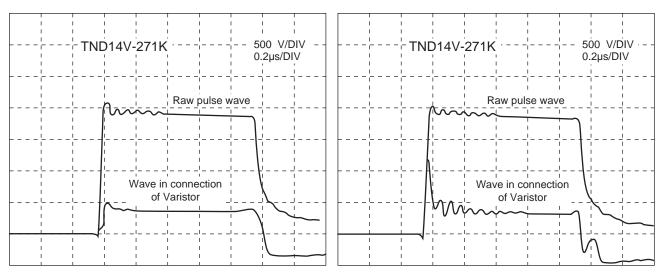


Fig. 5 Relationship between pulse rise time and overshoot ratio



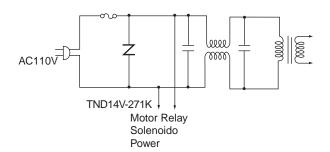
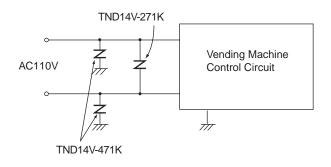
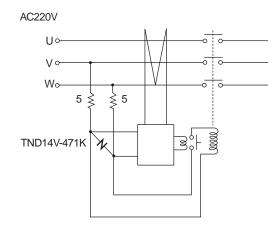
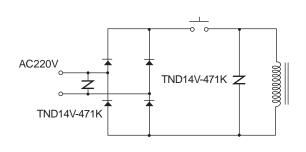
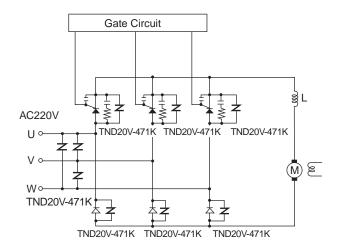


Fig. 6 Pulse absorption characteristic of Varistor (wiring length of 5mm)

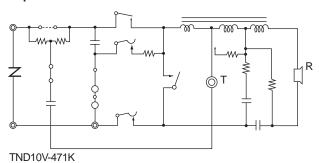
Fig. 7 Pulse absorption characteristic of Varistor (wiring length of 25cm)


(1)Power Source Curcuit


(2)Micro Computer Equipment


(3) Vending Machine


(4)Leakage Current Detector


(5)Maganetic Brake

(6)Control of 20kW DC Motor

(7)Telephone

ELECTRONIC COMPONENTS & DEVICES

PRODUCTS	
	CAT.No.
Aluminum Electrolytic Capacitors	1001
Multilayer Ceramic Capacitors	1002
Film Capacitors	1003
Metal Oxide Varistors TNR™	1006
Nanocrystalline / Amorphous / Dust Choke Coils	1008
Electric Double Layer Capacitors	1009
Camera Modules	

Notes on Safety

- Always read "Notes on Use" before using the product in order to enable you to use the product correctly and prevent any faults and accidents from occurring.
- Request the Product Specification on the product of NIPPON CHEMI-CON CORPORATION to refer to it as well as this brochure prior to the order of the products. Some specific notes on use of the ordered product may be described in the specifications.
- The products listed in this catalog are designed and manufactured for general electronics equipment use and are not intended for use in applications that can adversely affect human life; where the malfunction of equipment may cause damage to life or property. In addition, our products are not intended to be used in specific applications that may cause a major social impact. Please consult with us in advance of usage of our products in the following listed applications. ① Aerospace equipment ② Power generation equipment such as thermal power, nuclear power etc. ③ Medical equipment ① Transport equipment (automobiles, trains, ships, etc.) ⑤ Transportation control equipment ⑥ Disaster prevention/ crime prevention equipment ⑦ Highly publicized information processing equipment ⑧ Submarine equipment ⑨ Other applications that are not considered general-purpose applications.
- The circuits described as examples in this catalog and the "delivery specifications" are featured in order to show the operations and usage of our products, however, this fact does not guarantee that the circuits are available to function in your equipment systems. We are not in any case responsible for any failures or damage caused by the use of information contained herein. You should examine our products, of which the characteristics are described in the "delivery specifications" and other documents, and determine whether or not our products suit your requirements according to the specifications of your equipment systems. Therefore, you bear final responsibility regarding the use of our products. Please make sure that you take appropriate safety measures such as use of redundant design and malfunction prevention measures in order to prevent fatal accidents and/or fires in the event any of our products malfunction.

Note

- We strongly recommend our customers to purchase Nippon Chemi-Con products only through our official sales channels. We assume no responsibility for any defects or damages caused by using products purchased from outside our official sales channel or of counterfeit goods. In addition, we will ask the customer to pay the investigation cost for products purchased outside our official sales channel.
- We reserve the right to discontinue production and delivery of products. We do not guarantee that all the products included in this catalog will be available in the future.
- The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products ■ We continually strive to improve the quality and reliability of our products, but in any case that our product does not meet our published specifications, please stop using it promptly and contact us immediately. As for compensation for non-conforming goods delivered by Chemi-Con, we will limit it only to goods found in non-compliance of our published specifications. This may be accomplished by a no cost replacement of non-conforming individual products, a credit of the piece price paid per each individual non-conforming product, or in other wavs deemed necessary
 - In addition, we have an established system with enhanced traceability, therefore we will limit the applicable lot items for any potential compensation.
- ■The content of this catalog is as of April 2024

Distributed or Represented by

NIPPON CHEMI-CON CORPORATION

https://www.chemi-con.co.jp/en/